RESUMO
The purpose of this feature is to heighten awareness of specific adverse drug reactions (ADRs), discuss methods of prevention, and promote reporting of ADRs to the US Food and Drug Administration's (FDA) MedWatch program (800-FDA-1088). If you have reported an interesting, preventable ADR to MedWatch, please consider sharing the account with our readers. E-mail Dr. Mancano at michael.mancano@temple.edu. Your report will be published anonymously unless otherwise requested. This feature is provided by the Institute for Safe Medication Practices (ISMP) in cooperation with the FDA's MedWatch program and Temple University School of Pharmacy. ISMP is an FDA MedWatch partner.
RESUMO
Antimicrobial stewardship (AMS) programs have been quick to adopt novel molecular rapid diagnostic technologies (mRDTs) for bloodstream infections (BSIs) to improve antimicrobial management. As such, most of the literature demonstrating the clinical and economic benefits of mRDTs for BSI is in the presence of active AMS intervention. Leveraging mRDTs to improve antimicrobial therapy for BSI is increasingly integral to AMS program activities. This narrative review discusses available and future mRDTs, the relationship between the clinical microbiology laboratory and AMS programs, and practical considerations for optimizing the use of these tools within a health system. Antimicrobial stewardship programs must work closely with their clinical microbiology laboratories to ensure that mRDTs are used to their fullest benefit while remaining cognizant of their limitations. As more mRDT instruments and panels become available and AMS programs continue to expand, future efforts must consider the expansion beyond traditional settings of large academic medical centers and how combinations of tools can further improve patient care.
Assuntos
Anti-Infecciosos , Gestão de Antimicrobianos , Sepse , Humanos , Testes de Diagnóstico Rápido , Sepse/diagnóstico , Sepse/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Antibacterianos/uso terapêuticoRESUMO
Importance: Practice guidelines often provide recommendations in which the strength of the recommendation is dissociated from the quality of the evidence. Objective: To create a clinical guideline for the diagnosis and management of adult bacterial infective endocarditis (IE) that addresses the gap between the evidence and recommendation strength. Evidence Review: This consensus statement and systematic review applied an approach previously established by the WikiGuidelines Group to construct collaborative clinical guidelines. In April 2022 a call to new and existing members was released electronically (social media and email) for the next WikiGuidelines topic, and subsequently, topics and questions related to the diagnosis and management of adult bacterial IE were crowdsourced and prioritized by vote. For each topic, PubMed literature searches were conducted including all years and languages. Evidence was reported according to the WikiGuidelines charter: clear recommendations were established only when reproducible, prospective, controlled studies provided hypothesis-confirming evidence. In the absence of such data, clinical reviews were crafted discussing the risks and benefits of different approaches. Findings: A total of 51 members from 10 countries reviewed 587 articles and submitted information relevant to 4 sections: establishing the diagnosis of IE (9 questions); multidisciplinary IE teams (1 question); prophylaxis (2 questions); and treatment (5 questions). Of 17 unique questions, a clear recommendation could only be provided for 1 question: 3 randomized clinical trials have established that oral transitional therapy is at least as effective as intravenous (IV)-only therapy for the treatment of IE. Clinical reviews were generated for the remaining questions. Conclusions and Relevance: In this consensus statement that applied the WikiGuideline method for clinical guideline development, oral transitional therapy was at least as effective as IV-only therapy for the treatment of IE. Several randomized clinical trials are underway to inform other areas of practice, and further research is needed.
Assuntos
Endocardite Bacteriana , Endocardite , Guias de Prática Clínica como Assunto , Adulto , Humanos , Consenso , Endocardite/diagnóstico , Endocardite/terapia , Endocardite Bacteriana/prevenção & controle , Estudos ProspectivosRESUMO
Mycobacteriophage Mindy is a newly isolated phage of Mycobacterium smegmatis, recovered from a soil sample in Pittsburgh, Pennsylvania, USA. Mindy has a genome length of 75,796 bp, encodes 147 predicted proteins and two tRNAs, and is closely related to mycobacteriophages in cluster E.
RESUMO
Mycobacteriophage ShedlockHolmes is a newly isolated phage infecting Mycobacterium smegmatis mc(2)155. It has a 61,081-bp genome containing 99 predicted protein-coding genes and one tRNA gene. ShedlockHolmes is closely related to mycobacteriophages Pixie, Keshu, and MacnCheese and is a new member of subcluster K3.
RESUMO
AlanGrant, Baee, Corofin, OrangeOswald, and Vincenzo are newly isolated phages of Mycobacterium smegmatis mc(2)155 discovered in Pittsburgh, Pennsylvania, USA. All five phages share nucleotide similarity with cluster B mycobacteriophages but span considerable diversity with Corofin and OrangeOswald in subcluster B3, AlanGrant and Vincenzo in subcluster B4, and Baee in subcluster B5.
RESUMO
Mycobacteriophages--viruses of mycobacterial hosts--are genetically diverse but morphologically are all classified in the Caudovirales with double-stranded DNA and tails. We describe here a group of five closely related mycobacteriophages--Corndog, Catdawg, Dylan, Firecracker, and YungJamal--designated as Cluster O with long flexible tails but with unusual prolate capsids. Proteomic analysis of phage Corndog particles, Catdawg particles, and Corndog-infected cells confirms expression of half of the predicted gene products and indicates a non-canonical mechanism for translation of the Corndog tape measure protein. Bioinformatic analysis identifies 8-9 strongly predicted SigA promoters and all five Cluster O genomes contain more than 30 copies of a 17 bp repeat sequence with dyad symmetry located throughout the genomes. Comparison of the Cluster O phages provides insights into phage genome evolution including the processes of gene flux by horizontal genetic exchange.