Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 516(7530): 254-8, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25274307

RESUMO

Germinal centre B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) is a common malignancy, yet the signalling pathways that are deregulated and the factors leading to its systemic dissemination are poorly defined. Work in mice showed that sphingosine-1-phosphate receptor-2 (S1PR2), a Gα12 and Gα13 coupled receptor, promotes growth regulation and local confinement of germinal centre B cells. Recent deep sequencing studies of GCB-DLBCL have revealed mutations in many genes in this cancer, including in GNA13 (encoding Gα13) and S1PR2 (refs 5,6, 7). Here we show, using in vitro and in vivo assays, that GCB-DLBCL-associated mutations occurring in S1PR2 frequently disrupt the receptor's Akt and migration inhibitory functions. Gα13-deficient mouse germinal centre B cells and human GCB-DLBCL cells were unable to suppress pAkt and migration in response to S1P, and Gα13-deficient mice developed germinal centre B-cell-derived lymphoma. Germinal centre B cells, unlike most lymphocytes, are tightly confined in lymphoid organs and do not recirculate. Remarkably, deficiency in Gα13, but not S1PR2, led to germinal centre B-cell dissemination into lymph and blood. GCB-DLBCL cell lines frequently carried mutations in the Gα13 effector ARHGEF1, and Arhgef1 deficiency also led to germinal centre B-cell dissemination. The incomplete phenocopy of Gα13- and S1PR2 deficiency led us to discover that P2RY8, an orphan receptor that is mutated in GCB-DLBCL and another germinal centre B-cell-derived malignancy, Burkitt's lymphoma, also represses germinal centre B-cell growth and promotes confinement via Gα13. These findings identify a Gα13-dependent pathway that exerts dual actions in suppressing growth and blocking dissemination of germinal centre B cells that is frequently disrupted in germinal centre B-cell-derived lymphoma.


Assuntos
Linfócitos B/metabolismo , Linfócitos B/patologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Centro Germinativo/patologia , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Transdução de Sinais , Animais , Sangue/imunologia , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Humanos , Linfa/citologia , Linfoma Difuso de Grandes Células B/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Receptores de Lisoesfingolipídeo/deficiência , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Receptores Purinérgicos P2Y/genética , Receptores Purinérgicos P2Y/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/deficiência , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Receptores de Esfingosina-1-Fosfato
2.
J Biol Chem ; 292(39): 16300-16309, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28821615

RESUMO

Protein kinase Cα (PKCα) belongs to the family of AGC kinases that phosphorylate multiple peptide substrates. Although the consensus sequence motif has been identified and used to explain substrate specificity for PKCα, it does not inform the structural basis of substrate-binding and kinase activity for diverse substrates phosphorylated by this kinase. The transient, dynamic, and unstructured nature of this protein-protein interaction has limited structural mapping of kinase-substrate interfaces. Here, using multiscale MD simulation-based predictions and FRET sensor-based experiments, we investigated the conformational dynamics of the kinase-substrate interface. We found that the binding strength of the kinase-substrate interaction is primarily determined by long-range columbic interactions between basic (Arg/Lys) residues located N-terminally to the phosphorylated Ser/Thr residues in the substrate and by an acidic patch in the kinase catalytic domain. Kinase activity stemmed from conformational flexibility in the region C-terminal to the phosphorylated Ser/Thr residues. Flexibility of the substrate-kinase interaction enabled an Arg/Lys two to three amino acids C-terminal to the phosphorylated Ser/Thr to prime a catalytically active conformation, facilitating phosphoryl transfer to the substrate. The structural mechanisms determining substrate binding and catalytic activity formed the basis of diverse binding affinities and kinase activities of PKCα for 14 substrates with varying degrees of sequence conservation. Our findings provide insight into the dynamic properties of the kinase-substrate interaction that govern substrate binding and turnover. Moreover, this study establishes a modeling and experimental method to elucidate the structural dynamics underlying substrate selectivity among eukaryotic kinases.


Assuntos
Modelos Moleculares , Proteína Quinase C-alfa/metabolismo , Substituição de Aminoácidos , Animais , Biocatálise , Domínio Catalítico , Biologia Computacional , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Conformação Proteica , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Proteína Quinase C-alfa/química , Proteína Quinase C-alfa/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Homologia Estrutural de Proteína
3.
Bioconjug Chem ; 28(6): 1777-1790, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28520406

RESUMO

Polyethylene glycol (PEG) lipid nanoparticles (LNPs) spontaneously assemble in water, forming uniformly sized nanoparticles incorporating drugs with prolonged blood clearance compared to drugs alone. Previously, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycerol)-2000] (DSPE-PEG2000) and several drug adducts, including doxorubicin, were analyzed by a combination of physical and molecular dynamic (MD) studies. In this study, a complete chemical shift assignment of DSPE-PEG2000 plus or minus doxorubicin was achieved using nuclear magnetic resonance (NMR), one-dimensional selective nuclear Overhauser spectroscopy (1D-selNOESY), NOESY, correlation spectroscopy (COSY), total correlated spectroscopy (TOCSY), heteronuclear single quantum coherence (HSQC), and HSQC-TOCSY. Chemical shift perturbation, titration, relaxation enhancement, and NOESY analysis combined with MD reveal detailed structural information at the atomic level, including the location of doxorubicin in the micelle, its binding constant, the hydrophilic shell organization, and the mobility of the PEG2000 tail, demonstrating that NMR spectroscopy can characterize drug-DSPE-PEG2000 micelles with molecular weights above 180 kDa. The MD study revealed that an initial spherical organization led to a more-disorganized oblate structure in an aqueous environment and agreed with the NMR study in the details of the fine structure, in which methyl group(s) of the stearic acid in the hydrophobic core of the micelle are in contact with the phosphate headgroup of the lipid. Although the molecular size of the LNP drug complex is about 180 kDa, atomic resolution can be achieved by NMR-based methods that reveal distinct features of the drug-lipid interactions. Because many drugs have unfavorable blood clearance that may benefit from incorporation into LNPs, a thorough knowledge of their physical and chemical properties is essential to moving them into a clinical setting. This study provides an advanced basic approach that can be used to study a wide range of drug-LNP interactions.


Assuntos
Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Espectroscopia de Ressonância Magnética/métodos , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Estabilidade de Medicamentos , Micelas , Simulação de Dinâmica Molecular
4.
J Chem Phys ; 144(4): 044112, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26827207

RESUMO

The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential energy distortions encountered in constrained ICMD simulations of peptide molecules.


Assuntos
Simulação de Dinâmica Molecular , Polímeros/química , Proteínas/química
5.
J Comput Chem ; 35(31): 2245-55, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25263538

RESUMO

The generalized Newton-Euler inverse mass operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this article, we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, and Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials.


Assuntos
Proteínas/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Software
6.
J Chem Inf Model ; 54(2): 508-17, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24397429

RESUMO

A longstanding challenge in using computational methods for protein structure prediction is the refinement of low-resolution structural models derived from comparative modeling methods into highly accurate atomistic models useful for detailed structural studies. Previously, we have developed and demonstrated the utility of the internal coordinate molecular dynamics (MD) technique, generalized Newton-Euler inverse mass operator (GNEIMO), for refinement of small proteins. Using GNEIMO, the high-frequency degrees of freedom are frozen and the protein is modeled as a collection of rigid clusters connected by torsional hinges. This physical model allows larger integration time steps and focuses the conformational search in the low frequency torsional degrees of freedom. Here, we have applied GNEIMO with temperature replica exchange to refine low-resolution protein models of 30 proteins taken from the continuous assessment of structure prediction (CASP) competition. We have shown that GNEIMO torsional MD method leads to refinement of up to 1.3 Å in the root-mean-square deviation in coordinates for 30 CASP target proteins without using any experimental data as restraints in performing the GNEIMO simulations. This is in contrast with the unconstrained all-atom Cartesian MD method performed under the same conditions, where refinement requires the use of restraints during the simulations.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Conformação Proteica , Homologia de Sequência de Aminoácidos , Termodinâmica
7.
Adv Exp Med Biol ; 796: 37-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24158800

RESUMO

G-protein coupled receptors (GPCRs) are seven helical transmembrane proteins that mediate cell-to-cell communication. They also form the largest superfamily of drug targets. Hence detailed studies of the three dimensional structure and dynamics are critical to understanding the functional role of GPCRs in signal transduction pathways, and for drug design. In this chapter we compare the features of the crystal structures of various biogenic amine receptors, such as ß1 and ß2 adrenergic receptors, dopamine D3 receptor, M2 and M3 muscarinic acetylcholine receptors. This analysis revealed that conserved residues are located facing the inside of the transmembrane domain in these GPCRs improving the efficiency of packing of these structures. The NMR structure of the chemokine receptor CXCR1 without any ligand bound, shows significant dynamics of the transmembrane domain, especially the helical kink angle on the transmembrane helix6. The activation mechanism of the ß2-adrenergic receptor has been studied using multiscale computational methods. The results of these studies showed that the receptor without any ligand bound, samples conformations that resemble some of the structural characteristics of the active state of the receptor. Ligand binding stabilizes some of the conformations already sampled by the apo receptor. This was later observed in the NMR study of the dynamics of human ß2-adrenergic receptor. The dynamic nature of GPCRs leads to a challenge in obtaining purified receptors for biophysical studies. Deriving thermostable mutants of GPCRs has been a successful strategy to reduce the conformational heterogeneity and stabilize the receptors. This has lead to several crystal structures of GPCRs. However, the cause of how these mutations lead to thermostability is not clear. Computational studies are beginning to shed some insight into the possible structural basis for the thermostability. Molecular Dynamics simulations studying the conformational ensemble of thermostable mutants have shown that the stability could arise from both enthalpic and entropic factors. There are regions of high stress in the wild type GPCR that gets relieved upon mutation conferring thermostability.


Assuntos
Proteínas de Membrana/química , Receptores Acoplados a Proteínas G/química , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Termodinâmica
8.
J Comput Chem ; 34(11): 904-14, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23345138

RESUMO

Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle, and torsional coordinates instead of a Cartesian coordinate representation. Freezing high-frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed to make the CICMD method robust and widely usable. In this article, we have designed a new framework for (1) initializing velocities for nonindependent CICMD coordinates, (2) efficient computation of center of mass velocity during CICMD simulations, (3) using advanced integrators such as Runge-Kutta, Lobatto, and adaptive CVODE for CICMD simulations, and (4) cancelling out the "flying ice cube effect" that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this article, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse-graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided "freezing and thawing" of degrees of freedom in the molecule on the fly during molecular dynamics simulations and is shown to fold four proteins to their native topologies. With these advancements, we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Software , Algoritmos , Cinética , Estrutura Secundária de Proteína , Termodinâmica
9.
J Chem Phys ; 139(24): 244103, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24387353

RESUMO

The technique of constraining high frequency modes of molecular motion is an effective way to increase simulation time scale and improve conformational sampling in molecular dynamics simulations. However, it has been shown that constraints on higher frequency modes such as bond lengths and bond angles stiffen the molecular model, thereby introducing systematic biases in the statistical behavior of the simulations. Fixman proposed a compensating potential to remove such biases in the thermodynamic and kinetic properties calculated from dynamics simulations. Previous implementations of the Fixman potential have been limited to only short serial chain systems. In this paper, we present a spatial operator algebra based algorithm to calculate the Fixman potential and its gradient within constrained dynamics simulations for branched topology molecules of any size. Our numerical studies on molecules of increasing complexity validate our algorithm by demonstrating recovery of the dihedral angle probability distribution function for systems that range in complexity from serial chains to protein molecules. We observe that the Fixman compensating potential recovers the free energy surface of a serial chain polymer, thus annulling the biases caused by constraining the bond lengths and bond angles. The inclusion of Fixman potential entails only a modest increase in the computational cost in these simulations. We believe that this work represents the first instance where the Fixman potential has been used for general branched systems, and establishes the viability for its use in constrained dynamics simulations of proteins and other macromolecules.


Assuntos
Simulação de Dinâmica Molecular , Conformação Molecular , Peptídeos/química , Torque
10.
Mol Cancer Res ; 18(3): 424-435, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31685642

RESUMO

Homologous recombination (HR) is a highly conserved pathway that can facilitate the repair of DNA double-strand breaks (DSB). Several Deubiquitinases (DUB) have been implicated as key players in DNA damage repair (DDR) through HR. Here, we report USP22, a DUB that is highly overexpressed in multiple cancer types, is necessary for HR through a direct interaction with PALB2 through its C-terminal WD40 domain. This interaction stimulates USP22 catalytic activity in vitro. Furthermore, we show USP22 is necessary for BRCA2, PALB2, and Rad51 recruitment to DSBs and this is, in part, through USP22 stabilizing BRCA2 and PALB2 levels. Taken together, our results describe a role for USP22 in DNA repair. IMPLICATIONS: This research provides new and exciting mechanistic insights into how USP22 overexpression promotes chemoresistance in lung cancer. We believe this study, and others, will help aid in developing targeted drugs toward USP22 and known binding partners for lung cancer treatment.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Recombinação Homóloga , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ubiquitina Tiolesterase/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA