Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell ; 184(11): 2878-2895.e20, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33979654

RESUMO

The activities of RNA polymerase and the spliceosome are responsible for the heterogeneity in the abundance and isoform composition of mRNA in human cells. However, the dynamics of these megadalton enzymatic complexes working in concert on endogenous genes have not been described. Here, we establish a quasi-genome-scale platform for observing synthesis and processing kinetics of single nascent RNA molecules in real time. We find that all observed genes show transcriptional bursting. We also observe large kinetic variation in intron removal for single introns in single cells, which is inconsistent with deterministic splice site selection. Transcriptome-wide footprinting of the U2AF complex, nascent RNA profiling, long-read sequencing, and lariat sequencing further reveal widespread stochastic recursive splicing within introns. We propose and validate a unified theoretical model to explain the general features of transcription and pervasive stochastic splice site selection.


Assuntos
Precursores de RNA/genética , Sítios de Splice de RNA/fisiologia , Transcrição Gênica , Éxons/genética , Humanos , Íntrons/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Splicing de RNA/fisiologia , RNA Mensageiro/metabolismo , Spliceossomos/metabolismo , Transcriptoma
2.
Annu Rev Biochem ; 89: 189-212, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208766

RESUMO

Transcription in several organisms from certain bacteria to humans has been observed to be stochastic in nature: toggling between active and inactive states. Periods of active nascent RNA synthesis known as bursts represent individual gene activation events in which multiple polymerases are initiated. Therefore, bursting is the single locus illustration of both gene activation and repression. Although transcriptional bursting was originally observed decades ago, only recently have technological advances enabled the field to begin elucidating gene regulation at the single-locus level. In this review, we focus on how biochemical, genomic, and single-cell data describe the regulatory steps of transcriptional bursts.


Assuntos
Cromatina/química , DNA/genética , Regulação da Expressão Gênica , Genoma , RNA Polimerase II/genética , RNA Mensageiro/genética , Transcrição Gênica , Animais , Cromatina/metabolismo , DNA/metabolismo , Células Eucarióticas/metabolismo , Loci Gênicos , Histonas/genética , Histonas/metabolismo , Humanos , Técnicas de Sonda Molecular , Sondas Moleculares/química , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Análise de Célula Única/métodos , Processos Estocásticos
3.
Cell ; 176(1-2): 213-226.e18, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30554876

RESUMO

Transcriptional regulation in metazoans occurs through long-range genomic contacts between enhancers and promoters, and most genes are transcribed in episodic "bursts" of RNA synthesis. To understand the relationship between these two phenomena and the dynamic regulation of genes in response to upstream signals, we describe the use of live-cell RNA imaging coupled with Hi-C measurements and dissect the endogenous regulation of the estrogen-responsive TFF1 gene. Although TFF1 is highly induced, we observe short active periods and variable inactive periods ranging from minutes to days. The heterogeneity in inactive times gives rise to the widely observed "noise" in human gene expression and explains the distribution of protein levels in human tissue. We derive a mathematical model of regulation that relates transcription, chromosome structure, and the cell's ability to sense changes in estrogen and predicts that hypervariability is largely dynamic and does not reflect a stable biological state.


Assuntos
Regulação da Expressão Gênica/fisiologia , Expressão Gênica/fisiologia , Transcrição Gênica/fisiologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Expressão Gênica/genética , Humanos , Modelos Teóricos , Regiões Promotoras Genéticas/fisiologia , RNA Mensageiro/metabolismo , Análise de Célula Única/métodos , Transcrição Gênica/genética , Ativação Transcricional/fisiologia , Fator Trefoil-1/genética
4.
Mol Cell ; 82(11): 1974-1975, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35659322

RESUMO

Chong et al. (2022) show how the propensity of transcription factors (TFs) to associate into hubs must be finely regulated for optimal transcription.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Cell ; 158(2): 241-242, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25036624

RESUMO

Transcriptional bursting has been observed across species and is one of the primary causes of variable gene expression in cells and tissue. In this issue, Chong et al. describe how DNA topology results in transcriptional bursting in E. coli.


Assuntos
Escherichia coli/genética , Transcrição Gênica
6.
Genes Dev ; 35(7-8): 427-432, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33861718

RESUMO

How transcriptional enhancers function to activate distant genes has been the subject of lively investigation for decades. "Enhancers, gene regulation, and genome organization" was the subject of a virtual meeting held November 16-17, 2020, under sponsorship of the National Cancer Institute (NCI), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) at the National Institutes of Health (NIH). The goal of the meeting was to advance an understanding of how transcriptional enhancers function within the framework of the folded genome as we understand it, emphasizing how levels of organization may influence each other and may contribute to the spatiotemporal specification of transcription. Here we focus on broad questions about enhancer function that remain unsettled and that we anticipate will be central to work in this field going forward. Perforce, we cover contributions of only some speakers and apologize to other contributors in vital areas that we could not include because of space constraints.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Genoma/genética , Humanos , National Institutes of Health (U.S.) , Estados Unidos
7.
EMBO J ; 42(7): e112358, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36762421

RESUMO

The recognition of polyadenylation signals (PAS) in eukaryotic pre-mRNAs is usually coupled to transcription termination, occurring while pre-mRNA is chromatin-bound. However, for some pre-mRNAs, this 3'-end processing occurs post-transcriptionally, i.e., through a co-transcriptional cleavage (CoTC) event downstream of the PAS, leading to chromatin release and subsequent PAS cleavage in the nucleoplasm. While DNA-damaging agents trigger the shutdown of co-transcriptional chromatin-associated 3'-end processing, specific compensatory mechanisms exist to ensure efficient 3'-end processing for certain pre-mRNAs, including those that encode proteins involved in the DNA damage response, such as the tumor suppressor p53. We show that cleavage at the p53 polyadenylation site occurs in part post-transcriptionally following a co-transcriptional cleavage event. Cells with an engineered deletion of the p53 CoTC site exhibit impaired p53 3'-end processing, decreased mRNA and protein levels of p53 and its transcriptional target p21, and altered cell cycle progression upon UV-induced DNA damage. Using a transcriptome-wide analysis of PAS cleavage, we identify additional pre-mRNAs whose PAS cleavage is maintained in response to UV irradiation and occurring post-transcriptionally. These findings indicate that CoTC-type cleavage of pre-mRNAs, followed by PAS cleavage in the nucleoplasm, allows certain pre-mRNAs to escape 3'-end processing inhibition in response to UV-induced DNA damage.


Assuntos
Poliadenilação , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Dano ao DNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Cromatina
8.
Mol Cell ; 74(1): 3-4, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951650

RESUMO

Cardozo Gizzi et al. (2019) develop a new sequential imaging methodology (Hi-M) for observing chromosome structure in the Drosophila blastoderm and find that topological domains in single nuclei change in response to transcriptional activation.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Animais , Cromossomos , Genoma , Microscopia
9.
Genes Dev ; 33(9-10): 482-497, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30842218

RESUMO

Somatic mutations in the genes encoding components of the spliceosome occur frequently in human neoplasms, including myeloid dysplasias and leukemias, and less often in solid tumors. One of the affected factors, U2AF1, is involved in splice site selection, and the most common change, S34F, alters a conserved nucleic acid-binding domain, recognition of the 3' splice site, and alternative splicing of many mRNAs. However, the role that this mutation plays in oncogenesis is still unknown. Here, we uncovered a noncanonical function of U2AF1, showing that it directly binds mature mRNA in the cytoplasm and negatively regulates mRNA translation. This splicing-independent role of U2AF1 is altered by the S34F mutation, and polysome profiling indicates that the mutation affects translation of hundreds of mRNA. One functional consequence is increased synthesis of the secreted chemokine interleukin 8, which contributes to metastasis, inflammation, and cancer progression in mice and humans.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/fisiopatologia , Fator de Processamento U2AF/metabolismo , Linhagem Celular Tumoral , Citoplasma/patologia , Progressão da Doença , Células HEK293 , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Células MCF-7 , Mutação/genética , Neoplasias/genética , Ligação Proteica , RNA Mensageiro/metabolismo , Fator de Processamento U2AF/genética
10.
Cell ; 147(7): 1484-97, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22196726

RESUMO

Messenger RNA decay measurements are typically performed on a population of cells. However, this approach cannot reveal sufficient complexity to provide information on mechanisms that may regulate mRNA degradation, possibly on short timescales. To address this deficiency, we measured cell cycle-regulated decay in single yeast cells using single-molecule FISH. We found that two genes responsible for mitotic progression, SWI5 and CLB2, exhibit a mitosis-dependent mRNA stability switch. Their transcripts are stable until mitosis, when a precipitous decay eliminates the mRNA complement, preventing carryover into the next cycle. Remarkably, the specificity and timing of decay is entirely regulated by their promoter, independent of specific cis mRNA sequences. The mitotic exit network protein Dbf2p binds to SWI5 and CLB2 mRNAs cotranscriptionally and regulates their decay. This work reveals the promoter-dependent control of mRNA stability, a regulatory mechanism that could be employed by a variety of mRNAs and organisms.


Assuntos
Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Estabilidade de RNA , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina B/genética , Hibridização in Situ Fluorescente , Cinética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
11.
Mol Cell ; 71(1): 129-141.e8, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29979962

RESUMO

The enhancer regions of the myogenic master regulator MyoD give rise to at least two enhancer RNAs. Core enhancer eRNA (CEeRNA) regulates transcription of the adjacent MyoD gene, whereas DRReRNA affects expression of Myogenin in trans. We found that DRReRNA is recruited at the Myogenin locus, where it colocalizes with Myogenin nascent transcripts. DRReRNA associates with the cohesin complex, and this association correlates with its transactivating properties. Despite being expressed in undifferentiated cells, cohesin is not loaded on Myogenin until the cells start expressing DRReRNA, which is then required for cohesin chromatin recruitment and maintenance. Functionally, depletion of either cohesin or DRReRNA reduces chromatin accessibility, prevents Myogenin activation, and hinders muscle cell differentiation. Thus, DRReRNA ensures spatially appropriate cohesin loading in trans to regulate gene expression.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Proteínas Cromossômicas não Histona/biossíntese , Elementos Facilitadores Genéticos , Músculo Esquelético/metabolismo , Miogenina/biossíntese , RNA não Traduzido/metabolismo , Transcrição Gênica , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Células HEK293 , Humanos , Camundongos , Músculo Esquelético/citologia , Proteína MyoD/biossíntese , Proteína MyoD/genética , Miogenina/genética , RNA não Traduzido/genética , Coesinas
12.
Mol Cell ; 67(6): 1049-1058.e6, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938092

RESUMO

Recent studies indicate that even a homogeneous population of cells display heterogeneity in gene expression and response to environmental stimuli. Although promoter structure critically influences the cell-to-cell variation of gene expression in bacteria and lower eukaryotes, it remains unclear what controls the gene expression noise in mammals. Here we report that CTCF decreases cell-to-cell variation of expression by stabilizing enhancer-promoter interaction. We show that CTCF binding sites are interwoven with enhancers within topologically associated domains (TADs) and a positive correlation is found between CTCF binding and the activity of the associated enhancers. Deletion of CTCF sites compromises enhancer-promoter interactions. Using single-cell flow cytometry and single-molecule RNA-FISH assays, we demonstrate that knocking down of CTCF or deletion of a CTCF binding site results in increased cell-to-cell variation of gene expression, indicating that long-range promoter-enhancer interaction mediated by CTCF plays important roles in controlling the cell-to-cell variation of gene expression in mammalian cells.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Camundongos Endogâmicos C57BL , Ligação Proteica , Interferência de RNA , Proteínas Repressoras/genética , Análise de Célula Única , Transcrição Gênica , Ativação Transcricional , Transfecção
13.
Genes Dev ; 30(16): 1796-810, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27601529

RESUMO

The production of a single mRNA is the result of many sequential steps, from docking of transcription factors to polymerase initiation, elongation, splicing, and, finally, termination. Much of our knowledge about the fundamentals of RNA synthesis and processing come from ensemble in vitro biochemical measurements. Single-molecule approaches are very much in this same reductionist tradition but offer exquisite sensitivity in space and time along with the ability to observe heterogeneous behavior and actually manipulate macromolecules. These techniques can also be applied in vivo, allowing one to address questions in living cells that were previously restricted to reconstituted systems. In this review, we examine the unique insights that single-molecule techniques have yielded on the mechanisms of gene expression.


Assuntos
Regulação da Expressão Gênica , Técnicas Genéticas , Animais , Núcleo Celular/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Técnicas Genéticas/normas , Técnicas Genéticas/tendências , Humanos , Elongação Traducional da Cadeia Peptídica , Splicing de RNA , Fatores de Transcrição/metabolismo
14.
EMBO J ; 38(12)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101674

RESUMO

Transcription factors show rapid and reversible binding to chromatin in living cells, and transcription occurs in sporadic bursts, but how these phenomena are related is unknown. Using a combination of in vitro and in vivo single-molecule imaging approaches, we directly correlated binding of the Gal4 transcription factor with the transcriptional bursting kinetics of the Gal4 target genes GAL3 and GAL10 in living yeast cells. We find that Gal4 dwell time sets the transcriptional burst size. Gal4 dwell time depends on the affinity of the binding site and is reduced by orders of magnitude by nucleosomes. Using a novel imaging platform called orbital tracking, we simultaneously tracked transcription factor binding and transcription at one locus, revealing the timing and correlation between Gal4 binding and transcription. Collectively, our data support a model in which multiple RNA polymerases initiate transcription during one burst as long as the transcription factor is bound to DNA, and bursts terminate upon transcription factor dissociation.


Assuntos
Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Sítios de Ligação , Metabolismo dos Carboidratos/genética , Galactoquinase/genética , Galactoquinase/metabolismo , Galactose/metabolismo , Regulação Fúngica da Expressão Gênica , Imagem Molecular/métodos , Organismos Geneticamente Modificados , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/métodos , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional/genética
15.
PLoS Biol ; 18(11): e3000920, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137094

RESUMO

U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1) forms a heterodimeric complex with U2AF2 that is primarily responsible for 3' splice site selection. U2AF1 mutations have been identified in most cancers but are prevalent in Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML), and the most common mutation is a missense substitution of serine-34 to phenylalanine (S34F). The U2AF heterodimer also has a noncanonical function as a translational regulator. Here, we report that the U2AF1-S34F mutation results in specific misregulation of the translation initiation and ribosome biogenesis machinery. The net result is an increase in mRNA translation at the single-cell level. Among the translationally up-regulated targets of U2AF1-S34F is Nucleophosmin 1 (NPM1), which is a major driver of myeloid malignancy. Depletion of NPM1 impairs the viability of the U2AF1-S34F mutant cells and causes ribosomal RNA (rRNA) processing defects, thus indicating an unanticipated synthetic interaction between U2AF1, NPM1, and ribosome biogenesis. Our results establish a unique molecular phenotype for the U2AF1 mutation that recapitulates translational misregulation in myeloid disease.


Assuntos
Ribossomos/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Substituição de Aminoácidos , Animais , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Inativação Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Células Progenitoras Mieloides/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Processamento Pós-Transcricional do RNA , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Ribossomos/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Mol Cell ; 60(4): 597-610, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26549684

RESUMO

Eukaryotic transcription is pervasive, and many of the resulting RNAs are non-coding. It is unknown whether ubiquitous transcription is functional or simply reflects stochastic transcriptional noise. By single-molecule visualization of the dynamic interplay between coding and non-coding transcription at the GAL locus in living yeast cells, we show that antisense GAL10 ncRNA transcription can switch between functional and spurious under different conditions. During galactose induction, GAL10 sense transcription occurs in short stochastic bursts, which are unaffected by transcription of antisense GAL10 ncRNA, even when both are present simultaneously at the same locus. In contrast, when GAL10 is not induced, ncRNA transcription is critical to prevent transcriptional leakage of GAL1 and GAL10. Suppression of ncRNA transcription by strand-specific CRISPR/dCas9 results in transcriptional leakage of the inducer GAL1, leading to a more sensitive transcription activation threshold, an alteration of metabolic switching, and a fitness defect in competition experiments.


Assuntos
Galactoquinase/genética , RNA Fúngico/genética , RNA Longo não Codificante/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transativadores/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Galactose/metabolismo , Regulação Fúngica da Expressão Gênica , Óperon , Transcrição Gênica
17.
Nat Rev Genet ; 14(8): 572-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23835438

RESUMO

Transcriptional regulation is achieved through combinatorial interactions between regulatory elements in the human genome and a vast range of factors that modulate the recruitment and activity of RNA polymerase. Experimental approaches for studying transcription in vivo now extend from single-molecule techniques to genome-wide measurements. Parallel to these developments is the need for testable quantitative and predictive models for understanding gene regulation. These conceptual models must also provide insight into the dynamics of transcription and the variability that is observed at the single-cell level. In this Review, we discuss recent results on transcriptional regulation and also the models those results engender. We show how a non-equilibrium description informs our view of transcription by explicitly considering time- and energy-dependence at the molecular level.


Assuntos
Regulação da Expressão Gênica , Genoma Humano , Fatores de Transcrição/genética , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Fatores de Transcrição/metabolismo
18.
BMC Cell Biol ; 18(1): 23, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545392

RESUMO

BACKGROUND: In Dictyostelium discoideum, vesicular transport of the adenylyl cyclase A (ACA) to the posterior of polarized cells is essential to relay exogenous 3',5'-cyclic adenosine monophosphate (cAMP) signals during chemotaxis and for the collective migration of cells in head-to-tail arrangements called streams. RESULTS: Using fluorescence in situ hybridization (FISH), we discovered that the ACA mRNA is asymmetrically distributed at the posterior of polarized cells. Using both standard estimators and Monte Carlo simulation methods, we found that the ACA mRNA enrichment depends on the position of the cell within a stream, with the posterior localization of ACA mRNA being strongest for cells at the end of a stream. By monitoring the recovery of ACA-YFP after cycloheximide (CHX) treatment, we observed that ACA mRNA and newly synthesized ACA-YFP first emerge as fluorescent punctae that later accumulate to the posterior of cells. We also found that the ACA mRNA localization requires 3' ACA cis-acting elements. CONCLUSIONS: Together, our findings suggest that the asymmetric distribution of ACA mRNA allows the local translation and accumulation of ACA protein at the posterior of cells. These data represent a novel functional role for localized translation in the relay of chemotactic signal during chemotaxis.


Assuntos
Adenilil Ciclases , Quimiotaxia/genética , Dictyostelium/enzimologia , Proteínas de Protozoários , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/genética , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Cicloeximida/farmacologia , Citoplasma/enzimologia , Corrente Citoplasmática/efeitos dos fármacos , Corrente Citoplasmática/fisiologia , Dictyostelium/metabolismo , Hibridização in Situ Fluorescente , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transporte de RNA/fisiologia , RNA Mensageiro/análise , RNA de Protozoário/análise , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Sequências Reguladoras de Ácido Ribonucleico/fisiologia , Transdução de Sinais
19.
Methods ; 103: 77-85, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27068658

RESUMO

RNA synthesis occurs through the multi-step process of transcription which consists of initiation, elongation, termination, and cleavage of the nascent RNA. In recent years, post-initiation events have attracted considerable attention as regulatory steps in gene expression. In particular, changes in elongation rate have been proposed to alter RNA fate either through changes in RNA secondary structure or recruitment of trans-acting factors, but systematic approaches for perturbing and measuring elongation rate are currently lacking. Here, we describe a system for precisely measuring elongation dynamics for single nascent transcripts at a single gene locus in human cell lines. The system is based on observing the production of fluorescently labeled RNA stem loops which flank a region of interest. The region of interest can be altered using flp recombinases, thus allowing one to study the effects of cis-acting sequences on transcription rate. The dual-color RNAs which are made during this process are exported and translated, thus enabling visualization of each step in gene expression.


Assuntos
RNA/biossíntese , Transcrição Gênica , Sequência de Bases , Linhagem Celular Tumoral , Clonagem Molecular , Perfilação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Sequências Repetidas Invertidas , Microscopia de Fluorescência , RNA/genética , Análise de Sequência de DNA , Espectrometria de Fluorescência
20.
Methods ; 96: 59-68, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26655523

RESUMO

In eukaryotes, mRNA synthesis is catalyzed by RNA polymerase II and involves several distinct steps, including transcript initiation, elongation, cleavage, and transcript release. Splicing of RNA can occur during (co-transcriptional) or after (post-transcriptional) RNA synthesis. Thus, RNA synthesis and processing occurs through the concerted activity of dozens of enzymes, each of which is potentially susceptible to perturbation by small molecules. However, there are few, if any, high-throughput screening strategies for identifying drugs which perturb a specific step in RNA synthesis and processing. Here we have developed a high-throughput fluorescence microscopy approach in single cells to screen for inhibitors of specific enzymatic steps in RNA synthesis and processing. By utilizing the high affinity interaction between bacteriophage capsid proteins (MS2, PP7) and RNA stem loops, we are able to fluorescently label the intron and exon of a ß-globin reporter gene in human cells. This approach allows one to measure the kinetics of transcription, splicing and release in both fixed and living cells using a tractable, genetically encoded assay in a stable cell line. We tested this reagent in a targeted screen of molecules that target chromatin readers and writers and identified three compounds that slow transcription elongation without changing transcription initiation.


Assuntos
Ensaios de Triagem em Larga Escala , Microscopia de Fluorescência/métodos , Splicing de RNA/efeitos dos fármacos , Análise de Célula Única/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Elongação da Transcrição Genética/efeitos dos fármacos , Iniciação da Transcrição Genética , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Éxons , Genes Reporter , Humanos , Íntrons , Sequências Repetidas Invertidas , Cinética , Levivirus/genética , Levivirus/metabolismo , RNA Polimerase II/antagonistas & inibidores , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Globinas beta/genética , Globinas beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA