Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(19): e2222081120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126723

RESUMO

Single-cell proteomics has emerged as a powerful method to characterize cellular phenotypic heterogeneity and the cell-specific functional networks underlying biological processes. However, significant challenges remain in single-cell proteomics for the analysis of proteoforms arising from genetic mutations, alternative splicing, and post-translational modifications. Herein, we have developed a highly sensitive functionally integrated top-down proteomics method for the comprehensive analysis of proteoforms from single cells. We applied this method to single muscle fibers (SMFs) to resolve their heterogeneous functional and proteomic properties at the single-cell level. Notably, we have detected single-cell heterogeneity in large proteoforms (>200 kDa) from the SMFs. Using SMFs obtained from three functionally distinct muscles, we found fiber-to-fiber heterogeneity among the sarcomeric proteoforms which can be related to the functional heterogeneity. Importantly, we detected multiple isoforms of myosin heavy chain (~223 kDa), a motor protein that drives muscle contraction, with high reproducibility to enable the classification of individual fiber types. This study reveals single muscle cell heterogeneity in large proteoforms and establishes a direct relationship between sarcomeric proteoforms and muscle fiber types, highlighting the potential of top-down proteomics for uncovering the molecular underpinnings of cell-to-cell variation in complex systems.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica , Proteômica/métodos , Reprodutibilidade dos Testes , Isoformas de Proteínas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteoma/metabolismo
2.
J Mol Cell Cardiol ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39490642

RESUMO

Variants in RNA binding motif protein 20 (RBM20) are causative in a severe form of dilated cardiomyopathy referred to as RBM20 cardiomyopathy, yet the mechanisms are unclear. Moreover, the reason(s) for phenotypic heterogeneity in carriers with different pathogenic variants are similarly opaque. To gain insight, we carried out multi-omics analysis, including the first analysis of gene expression changes at the protein level, of mice carrying two different pathogenic variants in the RBM20 nuclear localization signal (NLS). Direct comparison of the phenotypes confirmed greater premature morality in S639G variant carrying mice compared to mice with the S637A variant despite similar cardiac remodeling and dysfunction. Analysis of differentially spliced genes uncovered alterations in the splicing of both RBM20 target genes and non-target genes, including several genes previously implicated in arrhythmia. Global proteomics analysis found that a greater number of proteins were differentially expressed in the hearts of Rbm20S639G mice relative to WT than in Rbm20S637A versus WT. Gene ontology analysis suggested greater mitochondrial dysfunction in Rbm20S639G mice, although direct comparison of protein expression in the hearts of Rbm20S639G versus Rbm20S637A mice failed to identify any significant differences. Similarly, few differences were found by direct comparison of gene expression at the transcript level in Rbm20S639G and Rbm20S637A despite greater coverage. Our data provide a comprehensive overview of gene splicing and expression differences associated with pathogenic variants in RBM20, as well as insights into the molecular underpinnings of phenotypic heterogeneity associated with different dilated cardiomyopathy-associated variants.

3.
J Proteome Res ; 23(7): 2315-2322, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38913967

RESUMO

Native top-down mass spectrometry (nTDMS) allows characterization of protein structure and noncovalent interactions with simultaneous sequence mapping and proteoform characterization. The majority of nTDMS studies utilize purified recombinant proteins, with significant challenges hindering application to endogenous systems. To perform native top-down proteomics (nTDP), where endogenous proteins from complex biological systems are analyzed by nTDMS, it is essential to separate proteins under nondenaturing conditions. However, it remains difficult to achieve high resolution with MS-compatible online chromatography while preserving protein tertiary structure and noncovalent interactions. Herein, we report the use of online mixed-bed ion exchange chromatography (IEC) to enable separation of endogenous proteins from complex mixtures under nondenaturing conditions, preserving noncovalent interactions for nTDP analysis. We have successfully detected large proteins (>146 kDa) and identified endogenous metal-binding and oligomeric protein complexes in human heart tissue lysate. The use of a mixed-bed stationary phase allowed retention and elution of proteins over a wide range of isoelectric points without altering the sample or mobile phase pH. Overall, our method provides a simple online IEC-MS platform that can effectively separate proteins from complex mixtures under nondenaturing conditions and preserve higher-order structure for nTDP applications.


Assuntos
Proteômica , Cromatografia por Troca Iônica/métodos , Humanos , Proteômica/métodos , Miocárdio/química , Espectrometria de Massas/métodos , Misturas Complexas/química , Proteínas/química , Proteínas/análise , Proteínas/isolamento & purificação
4.
Anal Chem ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315630

RESUMO

Top-down-mass spectrometry (MS)-based proteomics has emerged as a premier technology to examine proteins at the proteoform level, enabling characterization of genetic mutations, alternative splicing, and post-translational modifications. However, significant challenges that remain in top-down proteomics include the analysis of large proteoforms and the sensitivity required to examine proteoforms from minimal amounts of sample. To address these challenges, we have developed a new method termed "small-scale serial Size Exclusion Chromatography" (s3SEC), which incorporates a small-scale protein extraction (1 mg of tissue) and serial SEC without postfractionation sample handling, coupled with online high sensitivity capillary reversed-phase liquid chromatography tandem MS (RPLC-MS/MS) for analysis of large proteoforms. The s3SEC-RPLC-MS/MS method significantly enhanced the sensitivity and reduced the proteome complexity across the fractions, enabling the detection of high MW proteoforms previously undetected in one-dimensional (1D)-RPLC analysis. Importantly, we observed a drastic improvement in the signal intensity of high MW proteoforms in early fractions when using the s3SEC-RPLC method. Moreover, we demonstrate that this s3SEC-RPLC-MS/MS method also allows the analysis of lower MW proteoforms in subsequent fractions without significant alteration in proteoform abundance and equivalent or improved fragmentation efficiency to that of the 1D-RPLC approach. Although this study focuses on the use of cardiac tissue, the s3SEC-RPLC-MS/MS method could be broadly applicable to other systems with limited sample inputs.

5.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294807

RESUMO

MOTIVATION: Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. RESULTS: We have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface. MASH Native supports various data formats and incorporates multiple options for deconvolution, database searching, and spectral summing to provide a "one-stop shop" for characterizing both native protein complexes and proteoforms. AVAILABILITY AND IMPLEMENTATION: The MASH Native app, video tutorials, written tutorials, and additional documentation are freely available for download at https://labs.wisc.edu/gelab/MASH_Explorer/MASHSoftware.php. All data files shown in user tutorials are included with the MASH Native software in the download .zip file.


Assuntos
Proteômica , Software , Bases de Dados Factuais , Proteínas de Ligação a DNA , Espectrometria de Massas , Proteômica/métodos
6.
Anal Chem ; 95(35): 13091-13100, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37607050

RESUMO

Top-down mass spectrometry (MS)-based proteomics has become a powerful tool for analyzing intact proteins and their associated post-translational modifications (PTMs). In particular, membrane proteins play critical roles in cellular functions and represent the largest class of drug targets. However, the top-down MS characterization of endogenous membrane proteins remains challenging, mainly due to their intrinsic hydrophobicity and low abundance. Phospholamban (PLN) is a regulatory membrane protein located in the sarcoplasmic reticulum and is essential for regulating cardiac muscle contraction. PLN has diverse combinatorial PTMs, and their dynamic regulation has significant influence on cardiac contractility and disease. Herein, we have developed a rapid and robust top-down proteomics method enabled by a photocleavable anionic surfactant, Azo, for the extraction and comprehensive characterization of endogenous PLN from cardiac tissue. We employed a two-pronged top-down MS approach using an online reversed-phase liquid chromatography tandem MS method on a quadrupole time-of-flight MS and a direct infusion method via an ultrahigh-resolution Fourier-transform ion cyclotron resonance MS. We have comprehensively characterized the sequence and combinatorial PTMs of endogenous human cardiac PLN. We have shown the site-specific localization of phosphorylation to Ser16 and Thr17 by MS/MS for the first time and the localization of S-palmitoylation to Cys36. Moreover, we applied our method to characterize PLN in disease and reported the significant reduction of PLN phosphorylation in human failing hearts with ischemic cardiomyopathy. Taken together, we have developed a streamlined top-down targeted proteomics method for comprehensive characterization of combinatorial PTMs in PLN toward better understanding the role of PLN in cardiac contractility.


Assuntos
Proteômica , Tensoativos , Humanos , Espectrometria de Massas em Tandem , Lipoproteínas , Proteínas de Membrana
7.
J Am Chem Soc ; 143(31): 12014-12024, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34328324

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes an extensively glycosylated surface spike (S) protein to mediate host cell entry, and the S protein glycosylation plays key roles in altering the viral binding/function and infectivity. However, the molecular structures and glycan heterogeneity of the new O-glycans found on the S protein regional-binding domain (S-RBD) remain cryptic because of the challenges in intact glycoform analysis by conventional bottom-up glycoproteomic approaches. Here, we report the complete structural elucidation of intact O-glycan proteoforms through a hybrid native and denaturing top-down mass spectrometry (MS) approach employing both trapped ion mobility spectrometry (TIMS) quadrupole time-of-flight and ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR)-MS. Native top-down TIMS-MS/MS separates the protein conformers of the S-RBD to reveal their gas-phase structural heterogeneity, and top-down FTICR-MS/MS provides in-depth glycoform analysis for unambiguous identification of the glycan structures and their glycosites. A total of eight O-glycoforms and their relative molecular abundance are structurally elucidated for the first time. These findings demonstrate that this hybrid top-down MS approach can provide a high-resolution proteoform-resolved mapping of diverse O-glycoforms of the S glycoprotein, which lays a strong molecular foundation to uncover the functional roles of their O-glycans. This proteoform-resolved approach can be applied to reveal the structural O-glycoform heterogeneity of emergent SARS-CoV-2 S-RBD variants as well as other O-glycoproteins in general.


Assuntos
Polissacarídeos/análise , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Sequência de Carboidratos , Polissacarídeos/química , Domínios Proteicos , Espectrometria de Massas em Tandem/métodos
8.
Anal Chem ; 93(29): 10013-10021, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34258999

RESUMO

Antibody-drug conjugates (ADCs) are one of the fastest growing classes of anticancer therapies. Combining the high targeting specificity of monoclonal antibodies (mAbs) with cytotoxic small molecule drugs, ADCs are complex molecular entities that are intrinsically heterogeneous. Primary sequence variants, varied drug-to-antibody ratio (DAR) species, and conformational changes in the starting mAb structure upon drug conjugation must be monitored to ensure the safety and efficacy of ADCs. Herein, we have developed a high-throughput method for the analysis of cysteine-linked ADCs using trapped ion mobility spectrometry (TIMS) combined with top-down mass spectrometry (MS) on a Bruker timsTOF Pro. This method can analyze ADCs (∼150 kDa) by TIMS followed by a three-tiered top-down MS characterization strategy for multi-attribute analysis. First, the charge state distribution and DAR value of the ADC are monitored (MS1). Second, the intact mass of subunits dissociated from the ADC by low-energy collision-induced dissociation (CID) is determined (MS2). Third, the primary sequence for the dissociated subunits is characterized by CID fragmentation using elevated collisional energies (MS3). We further automate this workflow by directly injecting the ADC and using MS segmentation to obtain all three tiers of MS information in a single 3-min run. Overall, this work highlights a multi-attribute top-down MS characterization method that possesses unparalleled speed for high-throughput characterization of ADCs.


Assuntos
Antineoplásicos , Imunoconjugados , Anticorpos Monoclonais , Espectrometria de Mobilidade Iônica , Espectrometria de Massas
9.
Anal Chem ; 92(22): 15096-15103, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33108180

RESUMO

Antibody drug conjugates (ADCs), which harness the high targeting specificity of monoclonal antibodies (mAb) with the potency of small molecule therapeutics, are one of the fastest growing pharmaceutical classes. Nevertheless, ADC conjugation techniques and processes may introduce intrinsic heterogeneity including primary sequence variants, varied drug-to-antibody ratio (DAR) species, and drug positional isomers, which must be monitored to ensure the safety and efficacy of ADCs. Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for characterization of ADCs. However, the conventional bottom-up MS analysis workflows require an enzymatic digestion step which can be time consuming and may introduce artifactual modifications. Herein, we develop an online LC-MS/MS method for rapid analysis of reduced ADCs without digestion, enabling determination of DAR, characterization of the primary sequence, and localization of the drug conjugation site of the ADC using high-resolution Fourier transform ion cyclotron resonance (FTICR) MS. Specifically, a model cysteine-linked ADC was reduced to generate six unique subunits: light chain (Lc) without drug (Lc0), Lc with 1 drug (Lc1), heavy chain (Hc) without drug (Hc0), and Hc with 1-3 drugs (Hc1-3, respectively). A concurrent reduction strategy is applied to assess ADC subunits in both the partially reduced (intrachain disulfide bonds remain intact) and fully reduced (all disulfide bonds are cleaved) forms. The entire procedure including the sample preparation and LC-MS/MS takes less than 55 min, enabling rapid multiattribute analysis of ADCs.


Assuntos
Cromatografia Líquida/métodos , Ciclotrons , Análise de Fourier , Imunoconjugados/análise , Espectrometria de Massas em Tandem/instrumentação , Imunoconjugados/química , Isomerismo , Fatores de Tempo
10.
bioRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090578

RESUMO

Top-down mass spectrometry (MS)-based proteomics has become a powerful tool for analyzing intact proteins and their associated post-translational modification (PTMs). In particular, membrane proteins play critical roles in cellular functions and represent the largest class of drug targets. However, the top-down MS characterization of endogenous membrane proteins remains challenging, mainly due to their intrinsic hydrophobicity and low abundance. Phospholamban (PLN) is a regulatory membrane protein located in the sarcoplasmic reticulum and is essential for regulating cardiac muscle contraction. PLN has diverse combinatorial PTMs and their dynamic regulation has significant influence on cardiac contractility and disease. Herein, we have developed a rapid and robust top-down proteomics method enabled by a photocleavable anionic surfactant, Azo, for the extraction and comprehensive characterization of endogenous PLN from cardiac tissue. We employed a two-pronged top-down MS approach using an online reversed-phase liquid chromatography tandem MS (LC-MS/MS) method on a quadrupole time-of-flight (Q-TOF) MS and a direct infusion method via an ultrahigh-resolution Fourier-transform ion cyclotron resonance (FTICR) MS. We have comprehensively characterized the sequence and combinatorial PTMs of endogenous human cardiac PLN. We have shown the site-specific localization of phosphorylation to Ser16 and Thr17 by MS/MS for the first time and the localization of S-palmitoylation to Cys36. Taken together, we have developed a streamlined top-down targeted proteomics method for comprehensive characterization of combinatorial PTMs in PLN toward better understanding the role of PLN in cardiac contractility.

11.
bioRxiv ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36711733

RESUMO

Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. Herein, we have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface. MASH Native supports various data formats and incorporates multiple options for deconvolution, database searching, and spectral summing to provide a one-stop shop for characterizing both native protein complexes and proteoforms. The MASH Native app, video tutorials, written tutorials and additional documentation are freely available for download at https://labs.wisc.edu/gelab/MASH_Explorer/MASHNativeSoftware.php . All data files shown in user tutorials are included with the MASH Native software in the download .zip file.

12.
Mol Omics ; 18(7): 627-634, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35762193

RESUMO

Dilated cardiomyopathy (DCM) is a major risk factor for developing heart failure and is often associated with an increased risk for life-threatening arrhythmia. Although numerous causal genes for DCM have been identified, RNA binding motif protein 20 (Rbm20) remains one of the few splicing factors that, when mutated or genetically ablated, leads to the development of DCM. In this study we sought to identify changes in the cardiac proteome in Rbm20 knockout (KO) rat hearts using global quantitative proteomics to gain insight into the molecular mechanisms precipitating the development of DCM in these rats. Our analysis identified changes in titin-interacting proteins involved in mechanical stretch-based signaling, as well as mitochondrial enzymes, which suggests that activation of pathological hypertrophy and altered mitochondrial metabolism and/or dysfunction, among other changes, contribute to the development of DCM in Rbm20 KO rats. Collectively, our findings provide the first report on changes in the cardiac proteome associated with genetic ablation of Rbm20.


Assuntos
Cardiomiopatia Dilatada , Proteoma , Animais , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/genética , Conectina/genética , Conectina/metabolismo , Proteoma/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos
13.
J Am Soc Mass Spectrom ; 32(6): 1278-1294, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33983025

RESUMO

Top-down mass spectrometry (MS)-based proteomics is a powerful technology for comprehensively characterizing proteoforms to decipher post-translational modifications (PTMs) together with genetic variations and alternative splicing isoforms toward a proteome-wide understanding of protein functions. In the past decade, top-down proteomics has experienced rapid growth benefiting from groundbreaking technological advances, which have begun to reveal the potential of top-down proteomics for understanding basic biological functions, unraveling disease mechanisms, and discovering new biomarkers. However, many challenges remain to be comprehensively addressed. In this Account & Perspective, we discuss the major challenges currently facing the top-down proteomics field, particularly in protein solubility, proteome dynamic range, proteome complexity, data analysis, proteoform-function relationship, and analytical throughput for precision medicine. We specifically review the major technology developments addressing these challenges with an emphasis on our research group's efforts, including the development of top-down MS-compatible surfactants for protein solubilization, functionalized nanoparticles for the enrichment of low-abundance proteoforms, strategies for multidimensional chromatography separation of proteins, and a new comprehensive user-friendly software package for top-down proteomics. We have also made efforts to connect proteoforms with biological functions and provide our visions on what the future holds for top-down proteomics.


Assuntos
Espectrometria de Massas/métodos , Proteínas/química , Proteoma/análise , Proteômica/métodos , Humanos , Espectrometria de Massas/estatística & dados numéricos , Medicina de Precisão/métodos , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Proteoma/metabolismo , Software , Solubilidade
14.
bioRxiv ; 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33688648

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes an extensively glycosylated surface spike (S) protein to mediate host cell entry and the S protein glycosylation is strongly implicated in altering viral binding/function and infectivity. However, the structures and relative abundance of the new O-glycans found on the S protein regional-binding domain (S-RBD) remain cryptic because of the challenges in intact glycoform analysis. Here, we report the complete structural characterization of intact O-glycan proteoforms using native top-down mass spectrometry (MS). By combining trapped ion mobility spectrometry (TIMS), which can separate the protein conformers of S-RBD and analyze their gas phase structural variants, with ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS analysis, the O-glycoforms of the S-RBD are comprehensively characterized, so that seven O-glycoforms and their relative molecular abundance are structurally elucidated for the first time. These findings demonstrate that native top-down MS can provide a high-resolution proteoform-resolved mapping of diverse O-glycoforms of the S glycoprotein, which lays a strong molecular foundation to uncover the functional roles of their O-glycans. This proteoform-resolved approach can be applied to reveal the structural O-glycoform heterogeneity of emergent SARS-CoV-2 S-RBD variants, as well as other O-glycoproteins in general.

15.
J Chromatogr A ; 1523: 162-172, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28747254

RESUMO

An important research direction in the continued development of two-dimensional liquid chromatography (2D-LC) is to improve the detection sensitivity of the method. This is especially important in applications where injection of large volumes of effluent from the first dimension (1D) column into the second dimension (2D) column leads to severe 2D peak broadening and peak shape distortion. For example, this is common when coupling two reversed-phase columns and the organic solvent content of the 1D mobile phase overwhelms the 2D column with each injection of 1D effluent, leading to low resolution in the second dimension. In a previous study we validated a simulation approach based on the Craig distribution model and adapted from the work of Czok and Guiochon [1] that enabled accurate simulation of simple isocratic and gradient separations with very small injection volumes, and isocratic separations with mismatched injection and mobile phase solvents [2]. In the present study we have extended this simulation approach to simulate separations relevant to 2D-LC. Specifically, we have focused on simulating 2D separations where gradient elution conditions are used, there is mismatch between the sample solvent and the starting point in the gradient elution program, injection volumes approach or even exceed the dead volume of the 2D column, and the extent of sample loop filling is varied. To validate this simulation we have compared results from simulations and experiments for 101 different conditions, including variation in injection volume (0.4-80µL), loop filling level (25-100%), and degree of mismatch between sample organic solvent and the starting point in the gradient elution program (-20 to +20% ACN). We find that that the simulation is accurate enough (median errors in retention time and peak width of -1.0 and -4.9%, without corrections for extra-column dispersion) to be useful in guiding optimization of 2D-LC separations. However, this requires that real injection profiles obtained from 2D-LC interface valves are used to simulate the introduction of samples into the 2D column. These profiles are highly asymmetric - simulation using simple rectangular pulses leads to peak widths that are far too narrow under many conditions. We believe the simulation approach developed here will be useful for addressing practical questions in the development of 2D-LC methods.


Assuntos
Cromatografia Líquida , Simulação por Computador , Indicadores e Reagentes , Compostos Orgânicos , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA