Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(1): 440-450, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36508743

RESUMO

Short-term mobile monitoring campaigns are increasingly used to assess long-term air pollution exposure in epidemiology. Little is known about how monitoring network design features, including the number of stops and sampling temporality, impacts exposure assessment models. We address this gap by leveraging an extensive mobile monitoring campaign conducted in the greater Seattle area over the course of a year during all days of the week and most hours. The campaign measured total particle number concentration (PNC; sheds light on ultrafine particulate (UFP) number concentration), black carbon (BC), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and carbon dioxide (CO2). In Monte Carlo sampling of 7327 total stops (278 sites × 26 visits each), we restricted the number of sites and visits used to estimate annual averages. Predictions from the all-data campaign performed well, with cross-validated R2s of 0.51-0.77. We found similar model performances (85% of the all-data campaign R2) with ∼1000 to 3000 randomly selected stops for NO2, PNC, and BC, and ∼4000 to 5000 stops for PM2.5 and CO2. Campaigns with additional temporal restrictions (e.g., business hours, rush hours, weekdays, or fewer seasons) had reduced model performances and different spatial surfaces. Mobile monitoring campaigns wanting to assess long-term exposure should carefully consider their monitoring designs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Dióxido de Carbono , Monitoramento Ambiental , Poluição do Ar/análise , Material Particulado/análise , Fuligem/análise
2.
Environ Sci Technol ; 57(26): 9538-9547, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37326603

RESUMO

Mobile monitoring is increasingly used to assess exposure to traffic-related air pollutants (TRAPs), including ultrafine particles (UFPs). Due to the rapid spatial decrease in the concentration of UFPs and other TRAPs with distance from roadways, mobile measurements may be non-representative of residential exposures, which are commonly used for epidemiologic studies. Our goal was to develop, apply, and test one possible approach for using mobile measurements in exposure assessment for epidemiology. We used an absolute principal component score model to adjust the contribution of on-road sources in mobile measurements to provide exposure predictions representative of cohort locations. We then compared UFP predictions at residential locations from mobile on-road plume-adjusted versus stationary measurements to understand the contribution of mobile measurements and characterize their differences. We found that predictions from mobile measurements are more representative of cohort locations after down-weighting the contribution of localized on-road plumes. Further, predictions at cohort locations derived from mobile measurements incorporate more spatial variation compared to those from short-term stationary data. Sensitivity analyses suggest that this additional spatial information captures features in the exposure surface not identified from the stationary data alone. We recommend the correction of mobile measurements to create exposure predictions representative of residential exposure for epidemiology.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Emissões de Veículos/análise
3.
Environ Res ; 223: 115451, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764437

RESUMO

BACKGROUND: Both exposure monitoring and exposure prediction have played key roles in assessing individual-level long-term exposure to air pollutants and their associations with human health. While there have been notable advances in exposure prediction methods, improvements in monitoring designs are also necessary, particularly given new monitoring paradigms leveraging low-cost sensors and mobile platforms. OBJECTIVES: We aim to provide a conceptual summary of novel monitoring designs for air pollution cohort studies that leverage new paradigms and technologies, to investigate their characteristics in real-world examples, and to offer practical guidance to future studies. METHODS: We propose a conceptual summary that focuses on two overarching types of monitoring designs, mobile and non-mobile, as well as their subtypes. We define mobile designs as monitoring from a moving platform, and non-mobile designs as stationary monitoring from permanent or temporary locations. We only consider non-mobile studies with cost-effective sampling devices. Then we discuss similarities and differences across previous studies with respect to spatial and temporal representation, data comparability between design classes, and the data leveraged for model development. Finally, we provide specific suggestions for future monitoring designs. RESULTS: Most mobile and non-mobile monitoring studies selected monitoring sites based on land use instead of residential locations, and deployed monitors over limited time periods. Some studies applied multiple design and/or sub-design classes to the same area, time period, or instrumentation, to allow comparison. Even fewer studies leveraged monitoring data from different designs to improve exposure assessment by capitalizing on different strengths. In order to maximize the benefit of new monitoring technologies, future studies should adopt monitoring designs that prioritize residence-based site selection with comprehensive temporal coverage and leverage data from different designs for model development in the presence of good data compatibility. DISCUSSION: Our conceptual overview provides practical guidance on novel exposure assessment monitoring for epidemiological applications.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Características de Residência
4.
Environ Sci Technol ; 56(16): 11460-11472, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35917479

RESUMO

Growing evidence links traffic-related air pollution (TRAP) to adverse health effects. We designed an innovative and extensive mobile monitoring campaign to characterize TRAP exposure levels for the Adult Changes in Thought (ACT) study, a Seattle-based cohort. The campaign measured particle number concentration (PNC) to capture ultrafine particles (UFP), black carbon (BC), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and carbon dioxide (CO2) at 309 roadside sites within a large, 1200 land km2 (463 mi2) area representative of the cohort. We collected about 29 two-minute measurements at each site during all seasons, days of the week, and most times of the day over a 1-year period. Validation showed good agreement between our BC, NO2, and PM2.5 measurements and monitoring agency sites (R2 = 0.68-0.73). Universal kriging-partial least squares models of annual average pollutant concentrations had cross-validated mean square error-based R2 (and root mean square error) values of 0.77 (1177 pt/cm3) for PNC, 0.60 (102 ng/m3) for BC, 0.77 (1.3 ppb) for NO2, 0.70 (0.3 µg/m3) for PM2.5, and 0.51 (4.2 ppm) for CO2. Overall, we found that the design of this extensive campaign captured the spatial pollutant variations well and these were explained by sensible land use features, including those related to traffic.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Dióxido de Carbono , Monitoramento Ambiental , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Fuligem
5.
Environ Sci Technol ; 55(6): 3530-3538, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33635626

RESUMO

Mobile monitoring is increasingly employed to measure fine spatial-scale variation in air pollutant concentrations. However, mobile measurement campaigns are typically conducted over periods much shorter than the decadal periods used for modeling chronic exposure for use in air pollution epidemiology. Using the regions of Los Angeles and Baltimore and the time period from 2005 to 2014 as our modeling domain, we investigate whether including mobile or stationary passive sampling device (PSD) monitoring data collected over a single 2-week period in one or two seasons using a unified spatio-temporal air pollution model can improve model performance in predicting NO2 and NOx concentrations throughout the 9-year study period beyond what is possible using only routine monitoring data. In this initial study, we use data from mobile measurement campaigns conducted contemporaneously with deployments of stationary PSDs and only use mobile data collected within 300 m of a stationary PSD location for inclusion in the model. We find that including either mobile or PSD data substantially improves model performance for pollutants and locations where model performance was initially the worst (with the most-improved R2 changing from 0.40 to 0.82) but does not meaningfully change performance in cases where performance was already very good. Results indicate that in many cases, additional spatial information from mobile monitoring and personal sampling is potentially cost-efficient inexpensive way of improving exposure predictions at both 2-week and decadal averaging periods, especially for the predictions that are located closer to features such as roadways targeted by the mobile short-term monitoring campaign.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Baltimore , Monitoramento Ambiental , Los Angeles , Material Particulado/análise
6.
Environ Sci Technol ; 55(5): 2847-2858, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544581

RESUMO

The Mobile ObserVations of Ultrafine Particles study was a two-year project to analyze potential air quality impacts of ultrafine particles (UFPs) from aircraft traffic for communities near an international airport. The study assessed UFP concentrations within 10 miles of the airport in the directions of aircraft flight. Over the course of four seasons, this study conducted a mobile sampling scheme to collect time-resolved measures of UFP, CO2, and black carbon (BC) concentrations, as well as UFP size distributions. Primary findings were that UFPs were associated with both roadway traffic and aircraft sources, with the highest UFP counts found on the major roadway (I-5). Total concentrations of UFPs alone (10-1000 nm) did not distinguish roadway and aircraft features. However, key differences existed in the particle size distribution and the black carbon concentration for roadway and aircraft features. These differences can help distinguish between the spatial impact of roadway traffic and aircraft UFP emissions using a combination of mobile monitoring and standard statistical methods.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Aeronaves , Aeroportos , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
7.
Sensors (Basel) ; 21(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205429

RESUMO

We designed and built a network of monitors for ambient air pollution equipped with low-cost gas sensors to be used to supplement regulatory agency monitoring for exposure assessment within a large epidemiological study. This paper describes the development of a series of hourly and daily field calibration models for Alphasense sensors for carbon monoxide (CO; CO-B4), nitric oxide (NO; NO-B4), nitrogen dioxide (NO2; NO2-B43F), and oxidizing gases (OX-B431)-which refers to ozone (O3) and NO2. The monitor network was deployed in the Puget Sound region of Washington, USA, from May 2017 to March 2019. Monitors were rotated throughout the region, including at two Puget Sound Clean Air Agency monitoring sites for calibration purposes, and over 100 residences, including the homes of epidemiological study participants, with the goal of improving long-term pollutant exposure predictions at participant locations. Calibration models improved when accounting for individual sensor performance, ambient temperature and humidity, and concentrations of co-pollutants as measured by other low-cost sensors in the monitors. Predictions from the final daily models for CO and NO performed the best considering agreement with regulatory monitors in cross-validated root-mean-square error (RMSE) and R2 measures (CO: RMSE = 18 ppb, R2 = 0.97; NO: RMSE = 2 ppb, R2 = 0.97). Performance measures for NO2 and O3 were somewhat lower (NO2: RMSE = 3 ppb, R2 = 0.79; O3: RMSE = 4 ppb, R2 = 0.81). These high levels of calibration performance add confidence that low-cost sensor measurements collected at the homes of epidemiological study participants can be integrated into spatiotemporal models of pollutant concentrations, improving exposure assessment for epidemiological inference.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Calibragem , Monóxido de Carbono/análise , Monitoramento Ambiental , Estudos Epidemiológicos , Humanos , Óxido Nítrico/análise , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise
8.
Environ Sci Technol ; 54(23): 15320-15328, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33201675

RESUMO

Although the exposure to PM2.5 has serious health implications, indoor PM2.5 monitoring is not a widely applied practice. Regulations on the indoor PM2.5 level and measurement schemes are not well established. Compared to other indoor settings, PM2.5 prediction models for large office buildings are particularly lacking. In response to these challenges, statistical models were developed in this paper to predict the PM2.5 concentration in well-mixed indoor air in a commercial office building. The performances of different modeling methods, including multiple linear regression (MLR), partial least squares regression (PLS), distributed lag model (DLM), least absolute shrinkage selector operator (LASSO), simple artificial neural networks (ANN), and long-short term memory (LSTM), were compared. Various combinations of environmental and meteorological parameters were used as predictors. The root-mean-square error (RMSE) of the predicted hourly PM2.5 was 1.73 µg/m3 for the LSTM model and in the range of 2.20-4.71 µg/m3 for the other models when regulatory ambient PM2.5 data were used as predictors. The LSTM models outperformed other modeling approaches across the performance metrics used by learning the predictors' temporal patterns. Even without any ambient PM2.5 information, the developed models still demonstrated relatively high skill in predicting the PM2.5 levels in well-mixed indoor air.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Redes Neurais de Computação , Material Particulado/análise
9.
Environ Res ; 191: 110027, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32810504

RESUMO

BACKGROUND: Exposure to traffic-related air pollution is associated with an increased risk of cardiovascular and respiratory disease. Evidence suggests that inhaled pollutants precipitate these effects via multiple pathways involving oxidative stress. OBJECTIVE: Postulating that a decrease in circulating antioxidant levels reflect an oxidative response, we investigated the effect of inhaled diesel exhaust (DE) on the ratio of reduced to oxidized glutathione (GSH/GSSG) in healthy adults, and whether pre-exposure antioxidant supplementation blunted this response. We also examined exposure-related changes in antioxidant/stress response leukocyte gene expression (GCLc, HMOX-1, IL-6, TGFß) and plasma IL-6 levels. METHODS: Nineteen nonsmoking adults participated in a double-blind, randomized, four-way crossover study. Each subject completed 120-min exposures to filtered air and DE (200 µg/m3), with and without antioxidant pretreatment. Antioxidant comprised 1000 mg ascorbate for 7 days and 1200 mg N-acetylcysteine 1 day prior to exposure, with 1000 mg and 600 mg, respectively, administered 2 h prior to exposure. Whole blood glutathione was measured pre- and post-exposure; plasma IL-6 and mRNA expression were quantified pre, during and post exposure. RESULTS: Diesel exhaust exposure was associated with significantly decreased GSH/GSSG (p = 0.001) and a 4-fold increase in IL-6 mRNA (p = 0.01) post exposure. Antioxidant pretreatment did not significantly mediate the effect of DE exposure on GSH/GSSG, though appeared to decrease the effect of exposure on IL-6 mRNA expression. CONCLUSIONS: Acute DE inhalation induced detectable oxidative effects in healthy adults, which were not significantly attenuated by the selected antioxidant pre-treatment. This finding supports the premise that oxidative stress is one mechanism underlying the adverse effects of traffic-related air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Acetilcisteína , Adulto , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Antioxidantes , Estudos Cross-Over , Humanos , Exposição por Inalação , Emissões de Veículos/toxicidade
10.
Sensors (Basel) ; 20(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560462

RESUMO

We propose a low-cost passive method for monitoring long-term average levels of light-absorbing carbon air pollution in polluted indoor environments. Building on prior work, the method here estimates the change in reflectance of a passively exposed surface through analysis of digital images. To determine reproducibility and limits of detection, we tested low-cost passive samplers with exposure to kerosene smoke in the laboratory and to environmental pollution in 20 indoor locations. Preliminary results suggest robust reproducibility (r = 0.99) and limits of detection appropriate for longer-term (~1-3 months) monitoring in households that use solid fuels. The results here suggest high precision; further testing involving "gold standard" measurements is needed to investigate accuracy.

11.
Environmetrics ; 31(4)2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32581624

RESUMO

Accurate predictions of pollutant concentrations at new locations are often of interest in air pollution studies on fine particulate matters (PM2.5), in which data is usually not measured at all study locations. PM2.5 is also a mixture of many different chemical components. Principal component analysis (PCA) can be incorporated to obtain lower-dimensional representative scores of such multi-pollutant data. Spatial prediction can then be used to estimate these scores at new locations. Recently developed predictive PCA modifies the traditional PCA algorithm to obtain scores with spatial structures that can be well predicted at unmeasured locations. However, these approaches require complete data, whereas multi-pollutant data tends to have complex missing patterns in practice. We propose probabilistic versions of predictive PCA which allow for flexible model-based imputation that can account for spatial information and subsequently improve the overall predictive performance.

12.
Lancet ; 388(10045): 696-704, 2016 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-27233746

RESUMO

BACKGROUND: Long-term exposure to fine particulate matter less than 2.5 µm in diameter (PM2.5) and traffic-related air pollutant concentrations are associated with cardiovascular risk. The disease process underlying these associations remains uncertain. We aim to assess association between long-term exposure to ambient air pollution and progression of coronary artery calcium and common carotid artery intima-media thickness. METHODS: In this prospective 10-year cohort study, we repeatedly measured coronary artery calcium by CT in 6795 participants aged 45-84 years enrolled in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) in six metropolitan areas in the USA. Repeated scans were done for nearly all participants between 2002 and 2005, for a subset of participants between 2005 and 2007, and for half of all participants between 2010 and 2012. Common carotid artery intima-media thickness was measured by ultrasound in all participants at baseline and in 2010-12 for 3459 participants. Residence-specific spatio-temporal pollution concentration models, incorporating community-specific measurements, agency monitoring data, and geographical predictors, estimated concentrations of PM2.5 and nitrogen oxides (NOX) between 1999 and 2012. The primary aim was to examine the association between both progression of coronary artery calcium and mean carotid artery intima-media thickness and long-term exposure to ambient air pollutant concentrations (PM2.5, NOX, and black carbon) between examinations and within the six metropolitan areas, adjusting for baseline age, sex, ethnicity, socioeconomic characteristics, cardiovascular risk factors, site, and CT scanner technology. FINDINGS: In this population, coronary calcium increased on average by 24 Agatston units per year (SD 58), and intima-media thickness by 12 µm per year (10), before adjusting for risk factors or air pollutant exposures. Participant-specific pollutant concentrations averaged over the years 2000-10 ranged from 9.2-22.6 µg PM2.5/m(3) and 7.2-139.2 parts per billion (ppb) NOX. For each 5 µg PM2.5/m(3) increase, coronary calcium progressed by 4.1 Agatston units per year (95% CI 1.4-6.8) and for each 40 ppb NOX coronary calcium progressed by 4.8 Agatston units per year (0.9-8.7). Pollutant exposures were not associated with intima-media thickness change. The estimate for the effect of a 5 µg/m(3) higher long-term exposure to PM2.5 in intima-media thickness was -0.9 µm per year (95% CI -3.0 to 1.3). For 40 ppb higher NOX, the estimate was 0.2 µm per year (-1.9 to 2.4). INTERPRETATION: Increased concentrations of PM2.5 and traffic-related air pollution within metropolitan areas, in ranges commonly encountered worldwide, are associated with progression in coronary calcification, consistent with acceleration of atherosclerosis. This study supports the case for global efforts of pollution reduction in prevention of cardiovascular diseases. FUNDING: US Environmental Protection Agency and US National Institutes of Health.


Assuntos
Poluição do Ar/efeitos adversos , Poluição do Ar/estatística & dados numéricos , Aterosclerose/epidemiologia , Calcinose/epidemiologia , Artéria Carótida Primitiva/patologia , Doença das Coronárias/epidemiologia , Vasos Coronários/patologia , Adulto , Idoso , Poluentes Atmosféricos/análise , Aterosclerose/etnologia , Aterosclerose/etiologia , Calcinose/etnologia , Calcinose/etiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Espessura Intima-Media Carotídea , Estenose das Carótidas/epidemiologia , Estenose das Carótidas/etiologia , Doença das Coronárias/etnologia , Doença das Coronárias/etiologia , Doença das Coronárias/patologia , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Estados Unidos
13.
Epidemiology ; 27(3): 405-13, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27035690

RESUMO

BACKGROUND: Reduced heart rate variability, a marker of impaired cardiac autonomic function, has been linked to short-term exposure to airborne particles. This research adds to the literature by examining associations with long-term exposures to coarse particles (PM10-2.5). METHODS: Using electrocardiogram recordings from 2,780 participants (45-84 years) from three Multi-ethnic Study of Atherosclerosis sites, we assessed the standard deviation of normal to normal intervals and root-mean square differences of successive normal to normal intervals at a baseline (2000-2002) and follow-up (2010-2012) examination (mean visits/person = 1.5). Annual average concentrations of PM10-2.5 mass, copper, zinc, phosphorus, silicon, and endotoxin were estimated using site-specific spatial prediction models. We assessed associations for baseline heart rate variability and rate of change in heart rate variability over time using multivariable mixed models adjusted for time, sociodemographic, lifestyle, health, and neighborhood confounders, including copollutants. RESULTS: In our primary models adjusted for demographic and lifestyle factors and site, PM10-2.5 mass was associated with 1.0% (95% confidence interval [CI]: -4.1, 2.1%) lower standard deviation of normal to normal interval levels per interquartile range of 2 µg/m. Stronger associations, however, were observed before site adjustment and with increasing residential stability. Similar patterns were found for root-mean square differences of successive normal to normal intervals. We found little evidence for associations with other chemical species and with the rate of change in heart rate variability, though endotoxin was associated with increasing heart rate variability over time. CONCLUSION: We found only weak evidence that long-term PM10-2.5 exposures are associated with lowered heart rate variability. Stronger associations among residentially stable individuals suggest that confirmatory studies are needed.


Assuntos
Doenças do Sistema Nervoso Autônomo/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Cardiopatias/epidemiologia , Frequência Cardíaca/fisiologia , Material Particulado , Idoso , Idoso de 80 Anos ou mais , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Estudos de Coortes , Eletrocardiografia , Feminino , Cardiopatias/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Fatores de Risco
14.
Am J Respir Crit Care Med ; 191(12): 1413-21, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25867003

RESUMO

RATIONALE: More than 25 million American children breathe polluted air on diesel school buses. Emission reduction policies exist, but the health impacts to individual children have not been evaluated. METHODS: Using a natural experiment, we characterized the exposures and health of 275 school bus riders before, during, and after the adoption of clean technologies and fuels between 2005 and 2009. Air pollution was measured during 597 trips on 188 school buses. Repeated measures of exhaled nitric oxide (FeNO), lung function (FEV1, FVC), and absenteeism were also collected monthly (1,768 visits). Mixed-effects models longitudinally related the adoption of diesel oxidation catalysts (DOCs), closed crankcase ventilation systems (CCVs), ultralow-sulfur diesel (ULSD), or biodiesel with exposures and health. MEASUREMENTS AND MAIN RESULTS: Fine and ultrafine particle concentrations were 10-50% lower on buses using ULSD, DOCs, and/or CCVs. ULSD adoption was also associated with reduced FeNO (-16% [95% confidence interval (CI), -21 to -10%]), greater changes in FVC and FEV1 (0.02 [95% CI, 0.003 to 0.05] and 0.01 [95% CI, -0.006 to 0.03] L/yr, respectively), and lower absenteeism (-8% [95% CI, -16.0 to -0.7%]), with stronger associations among patients with asthma. DOCs, and to a lesser extent CCVs, also were associated with improved FeNO, FVC growth, and absenteeism, but these findings were primarily restricted to patients with persistent asthma and were often sensitive to control for ULSD. No health benefits were noted for biodiesel. Extrapolating to the U.S. population, changed fuel/technologies likely reduced absenteeism by more than 14 million/yr. CONCLUSIONS: National and local diesel policies appear to have reduced children's exposures and improved health.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/prevenção & controle , Gasolina/estatística & dados numéricos , Nível de Saúde , Veículos Automotores/estatística & dados numéricos , Emissões de Veículos/prevenção & controle , Absenteísmo , Biocombustíveis/estatística & dados numéricos , Criança , Monitoramento Ambiental/estatística & dados numéricos , Feminino , Humanos , Estudos Longitudinais , Masculino , Óxido Nítrico/metabolismo , Testes de Função Respiratória/estatística & dados numéricos , Washington
15.
Environ Sci Technol ; 49(22): 13422-30, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26501773

RESUMO

With emerging evidence that diesel exhaust exposure poses distinct risks to human health, the need for fine-scale models of diesel exhaust pollutants is growing. We modeled the spatial distribution of several nitrated polycyclic aromatic hydrocarbons (NPAHs) to identify fine-scale gradients in diesel exhaust pollution in two Seattle, WA neighborhoods. Our modeling approach fused land-use regression, meteorological dispersion modeling, and pollutant monitoring from both fixed and mobile platforms. We applied these modeling techniques to concentrations of 1-nitropyrene (1-NP), a highly specific diesel exhaust marker, at the neighborhood scale. We developed models of two additional nitroarenes present in secondary organic aerosol: 2-nitropyrene and 2-nitrofluoranthene. Summer predictors of 1-NP, including distance to railroad, truck emissions, and mobile black carbon measurements, showed a greater specificity to diesel sources than predictors of other NPAHs. Winter sampling results did not yield stable models, likely due to regional mixing of pollutants in turbulent weather conditions. The model of summer 1-NP had an R(2) of 0.87 and cross-validated R(2) of 0.73. The synthesis of high-density sampling and hybrid modeling was successful in predicting diesel exhaust pollution at a very fine scale and identifying clear gradients in NPAH concentrations within urban neighborhoods.


Assuntos
Poluentes Atmosféricos/análise , Modelos Teóricos , Pirenos/análise , Emissões de Veículos/análise , Aerossóis/análise , Aerossóis/química , Monitoramento Ambiental/métodos , Fluorenos/análise , Veículos Automotores , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Estações do Ano , Fuligem/análise , Washington
16.
Atmos Environ (1994) ; 123(A): 79-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27642250

RESUMO

BACKGROUND: Current epidemiologic studies rely on simple ozone metrics which may not appropriately capture population ozone exposure. For understanding health effects of long-term ozone exposure in population studies, it is advantageous for exposure estimation to incorporate the complex spatiotemporal pattern of ozone concentrations at fine scales. OBJECTIVE: To develop a geo-statistical exposure prediction model that predicts fine scale spatiotemporal variations of ambient ozone in six United States metropolitan regions. METHODS: We developed a modeling framework that estimates temporal trends from regulatory agency and cohort-specific monitoring data from MESA Air measurement campaigns and incorporates land use regression with universal kriging using predictor variables from a large geographic database. The cohort-specific data were measured at home and community locations. The framework was applied in estimating two-week average ozone concentrations from 1999 to 2013 in models of each of the six MESA Air metropolitan regions. RESULTS: Ozone models perform well in both spatial and temporal dimensions at the agency monitoring sites in terms of prediction accuracy. City-specific leave-one (site)-out cross-validation R2 accounting for temporal and spatial variability ranged from 0.65 to 0.88 in the six regions. For predictions at the home sites, the R2 is between 0.60 and 0.91 for cross-validation that left out 10% of home sites in turn. The predicted ozone concentrations vary substantially over space and time in all the metropolitan regions. CONCLUSION: Using the available data, our spatiotemporal models are able to accurately predict long-term ozone concentrations at fine spatial scales in multiple regions. The model predictions will allow for investigation of the long-term health effects of ambient ozone concentrations in future epidemiological studies.

17.
Am J Epidemiol ; 180(7): 718-28, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25164422

RESUMO

Long-term exposure to outdoor particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) has been associated with cardiovascular morbidity and mortality. The chemical composition of PM2.5 that may be most responsible for producing these associations has not been identified. We assessed cross-sectional associations between long-term concentrations of PM2.5 and 4 of its chemical components (sulfur, silicon, elemental carbon, and organic carbon (OC)) and subclinical atherosclerosis, measured as carotid intima-media thickness (CIMT) and coronary artery calcium, between 2000 and 2002 among 5,488 Multi-Ethnic Study of Atherosclerosis participants residing in 6 US metropolitan areas. Long-term concentrations of PM2.5 components at participants' homes were predicted using both city-specific spatiotemporal models and a national spatial model. The estimated differences in CIMT associated with interquartile-range increases in sulfur, silicon, and OC predictions from the spatiotemporal model were 0.022 mm (95% confidence interval (CI): 0.014, 0.031), 0.006 mm (95% CI: 0.000, 0.012), and 0.026 mm (95% CI: 0.019, 0.034), respectively. Findings were generally similar using the national spatial model predictions but were often sensitive to adjustment for city. We did not find strong evidence of associations with coronary artery calcium. Long-term concentrations of sulfur and OC, and possibly silicon, were associated with CIMT using 2 distinct exposure prediction modeling approaches.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Aterosclerose/etiologia , Exposição Ambiental/efeitos adversos , Material Particulado/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poluição do Ar/análise , Aterosclerose/diagnóstico , Estudos Transversais , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Material Particulado/análise , Material Particulado/química , Análise Espaço-Temporal , Estados Unidos , Saúde da População Urbana
18.
Environ Sci Technol ; 48(19): 11389-96, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25181558

RESUMO

Source contributions to total fine particle carbon predicted by a chemical transport model (CTM) were incorporated into the positive matrix factorization (PMF) receptor model to form a receptor-oriented hybrid model. The level of influence of the CTM versus traditional PMF was varied using a weighting parameter applied to an object function as implemented in the Multilinear Engine (ME-2). The methodology provides the ability to separate features that would not be identified using PMF alone, without sacrificing fit to observations. The hybrid model was applied to IMPROVE data taken from 2006 through 2008 at Monture and Sula Peak, Montana. It was able to separately identify major contributions of total carbon (TC) from wildfires and minor contributions from biogenic sources. The predictions of TC had a lower cross-validated RMSE than those from either PMF or CTM alone. Two unconstrained, minor features were identified at each site, a soil derived feature with elevated summer impacts and a feature enriched in sulfate and nitrate with significant, but sporadic contributions across the sampling period. The respective mean TC contributions from wildfires, biogenic emissions, and other sources were 1.18, 0.12, and 0.12 ugC/m(3) at Monture and 1.60, 0.44, and 0.06 ugC/m(3) at Sula Peak.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Incêndios , Modelos Teóricos , Monitoramento Ambiental , Montana , Nitratos/análise , Estações do Ano , Solo/química , Sulfatos/análise
19.
Environ Sci Technol ; 48(12): 6628-35, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24871496

RESUMO

We measured the spatial pattern of particle number (PN) concentrations downwind from the Los Angeles International Airport (LAX) with an instrumented vehicle that enabled us to cover larger areas than allowed by traditional stationary measurements. LAX emissions adversely impacted air quality much farther than reported in previous airport studies. We measured at least a 2-fold increase in PN concentrations over unimpacted baseline PN concentrations during most hours of the day in an area of about 60 km(2) that extended to 16 km (10 miles) downwind and a 4- to 5-fold increase to 8-10 km (5-6 miles) downwind. Locations of maximum PN concentrations were aligned to eastern, downwind jet trajectories during prevailing westerly winds and to 8 km downwind concentrations exceeded 75 000 particles/cm(3), more than the average freeway PN concentration in Los Angeles. During infrequent northerly winds, the impact area remained large but shifted to south of the airport. The freeway length that would cause an impact equivalent to that measured in this study (i.e., PN concentration increases weighted by the area impacted) was estimated to be 280-790 km. The total freeway length in Los Angeles is 1500 km. These results suggest that airport emissions are a major source of PN in Los Angeles that are of the same general magnitude as the entire urban freeway network. They also indicate that the air quality impact areas of major airports may have been seriously underestimated.


Assuntos
Aeroportos , Material Particulado/análise , Emissões de Veículos/análise , Vento , Movimentos do Ar , Poluentes Atmosféricos/análise , Aeronaves , Monitoramento Ambiental , Los Angeles , Conceitos Meteorológicos , Tamanho da Partícula , Fatores de Tempo
20.
Atmos Environ (1994) ; 84: 65-77, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27468256

RESUMO

PM10-2.5 mass and trace element concentrations were measured in Winston-Salem, Chicago, and St. Paul at up to 60 sites per city during two different seasons in 2010. Positive Matrix Factorization (PMF) was used to explore the underlying sources of variability. Information on previously reported PM10-2.5 tire and brake wear profiles was used to constrain these features in PMF by prior specification of selected species ratios. We also modified PMF to allow for combining the measurements from all three cities into a single model while preserving city-specific soil features. Relatively minor differences were observed between model predictions with and without the prior ratio constraints, increasing confidence in our ability to identify separate brake wear and tire wear features. Brake wear, tire wear, fertilized soil, and re-suspended soil were found to be important sources of copper, zinc, phosphorus, and silicon respectively across all three urban areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA