Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
PLoS Pathog ; 18(3): e1010309, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35316298

RESUMO

The eggs of the parasitic blood fluke, Schistosoma, are the main drivers of the chronic pathologies associated with schistosomiasis, a disease of poverty afflicting approximately 220 million people worldwide. Eggs laid by Schistosoma mansoni in the bloodstream of the host are encapsulated by vascular endothelial cells (VECs), the first step in the migration of the egg from the blood stream into the lumen of the gut and eventual exit from the body. The biomechanics associated with encapsulation and extravasation of the egg are poorly understood. We demonstrate that S. mansoni eggs induce VECs to form two types of membrane extensions during encapsulation; filopodia that probe eggshell surfaces and intercellular nanotubes that presumably facilitate VEC communication. Encapsulation efficiency, the number of filopodia and intercellular nanotubes, and the length of these structures depend on the egg's vitality and, to a lesser degree, its maturation state. During encapsulation, live eggs induce VEC contractility and membranous structures formation in a Rho/ROCK pathway-dependent manner. Using elastic hydrogels embedded with fluorescent microbeads as substrates to culture VECs, live eggs induce VECs to exert significantly greater contractile forces during encapsulation than dead eggs, which leads to 3D deformations on both the VEC monolayer and the flexible substrate underneath. These significant mechanical deformations cause the VEC monolayer tension to fluctuate with the eventual rupture of VEC junctions, thus facilitating egg transit out of the blood vessel. Overall, our data on the mechanical interplay between host VECs and the schistosome egg improve our understanding of how this parasite manipulates its immediate environment to maintain disease transmission.


Assuntos
Esquistossomose mansoni , Esquistossomose , Animais , Células Endoteliais , Humanos , Óvulo , Schistosoma mansoni , Esquistossomose mansoni/parasitologia
2.
Biophys J ; 120(3): 539-546, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359462

RESUMO

Mechanical forces influence the development and behavior of biological tissues. In many situations, these forces are exerted or resisted by elastic compliant structures such as the own-tissue cellular matrix or other surrounding tissues. This kind of tissue-elastic body interactions are also at the core of many state-of-the-art in situ force measurement techniques employed in biophysics. This creates the need to model tissue interaction with the surrounding elastic bodies that exert these forces, raising the question of which are the minimal ingredients needed to describe such interactions. We conduct experiments in which migrating cell monolayers push on carbon fibers as a model problem. Although the migrating tissue is able to bend the fiber for some time, it eventually recoils before coming to a stop. This stop occurs when cells have performed a fixed mechanical work on the fiber, regardless of its stiffness. Based on these observations, we develop a minimal active-fluid model that reproduces the experiments and predicts quantitatively relevant features of the system. This minimal model points out the essential ingredients needed to describe tissue-elastic solid interactions: an effective inertia and viscous stresses.


Assuntos
Citoesqueleto , Fenômenos Mecânicos , Fenômenos Biomecânicos , Biofísica , Viscosidade
3.
Proc Natl Acad Sci U S A ; 115(1): 133-138, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255056

RESUMO

Leukocyte transmigration across vessel walls is a critical step in the innate immune response. Upon their activation and firm adhesion to vascular endothelial cells (VECs), leukocytes preferentially extravasate across junctional gaps in the endothelial monolayer (paracellular diapedesis). It has been hypothesized that VECs facilitate paracellular diapedesis by opening their cell-cell junctions in response to the presence of an adhering leukocyte. However, it is unclear how leukocytes interact mechanically with VECs to open the VEC junctions and migrate across the endothelium. In this study, we measured the spatial and temporal evolution of the 3D traction stresses generated by the leukocytes and VECs to elucidate the sequence of mechanical events involved in paracellular diapedesis. Our measurements suggest that the contractile stresses exerted by the leukocytes and the VECs can separately perturb the junctional tensions of VECs to result in the opening of gaps before the initiation of leukocyte transmigration. Decoupling the stresses exerted by the transmigrating leukocytes and the VECs reveals that the leukocytes actively contract the VECs to open a junctional gap and then push themselves across the gap by generating strong stresses that push into the matrix. In addition, we found that diapedesis is facilitated when the tension fluctuations in the VEC monolayer were increased by proinflammatory thrombin treatment. Our findings demonstrate that diapedesis can be mechanically regulated by the transmigrating leukocytes and by proinflammatory signals that increase VEC contractility.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Junções Intercelulares/metabolismo , Leucócitos/metabolismo , Modelos Biológicos , Migração Transendotelial e Transepitelial/fisiologia , Células HL-60 , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Leucócitos/citologia
4.
Biophys J ; 117(1): 111-128, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31103228

RESUMO

Many biological processes involve the collective generation and transmission of mechanical stresses across cell monolayers. In these processes, the monolayer undergoes lateral deformation and bending because of the tangential and normal components of the cell-generated stresses. Monolayer stress microscopy (MSM) methods have been developed to measure the intracellular stress distribution in cell monolayers. However, current methods assume plane monolayer geometry and neglect the contribution of bending to the intracellular stresses. This work introduces a three-dimensional (3D) MSM method that calculates monolayer stress from measurements of the 3D traction stresses exerted by the cells on a flexible substrate. The calculation is carried out by imposing equilibrium of forces and moments in the monolayer, subject to external loads given by the 3D traction stresses. The equilibrium equations are solved numerically, and the algorithm is validated for synthetic loads with known analytical solutions. We present 3D-MSM measurements of monolayer stress in micropatterned islands of endothelial cells of different sizes and shapes. These data indicate that intracellular stresses caused by lateral deformation emerge collectively over long distances; they increase with the distance from the island edge until they reach a constant value that is independent of island size. On the other hand, bending-induced intracellular stresses are more concentrated spatially and remain confined to within one to two cell lengths of bending sites. The magnitude of these bending stresses is highest at the edges of the cell islands, where they can exceed the intracellular stresses caused by lateral deformations. Our data from nonpatterned monolayers suggests that biomechanical perturbations far away from monolayer edges also cause significant localized alterations in bending tension. The localized effect of bending-induced stresses may be important in processes like cellular extravasation, which are accompanied by significant normal deflections of a cell monolayer (i.e., the endothelium) and require localized changes in monolayer permeability.


Assuntos
Imageamento Tridimensional/métodos , Estresse Mecânico , Forma Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Microscopia de Fluorescência/métodos
5.
J Phys D Appl Phys ; 50(20)2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30906070

RESUMO

The aim of this work is to quantify the spatio-temporal dynamics of flow-driven amoeboid locomotion in small (~100 µm) fragments of the true slime mold Physarum polycephalum. In this model organism, cellular contraction drives intracellular flows, and these flows transport the chemical signals that regulate contraction in the first place. As a consequence of these non-linear interactions, a diversity of migratory behaviors can be observed in migrating Physarum fragments. To study these dynamics, we measure the spatio-temporal distributions of the velocities of the endoplasm and ectoplasm of each migrating fragment, the traction stresses it generates on the substratum, and the concentration of free intracellular calcium. Using these unprecedented experimental data, we classify migrating Physarum fragments according to their dynamics, finding that they often exhibit spontaneously coordinated waves of flow, contractility and chemical signaling. We show that Physarum fragments exhibiting symmetric spatio-temporal patterns of endoplasmic flow migrate significantly slower than fragments with asymmetric patterns. In addition, our joint measurements of ectoplasm velocity and traction stress at the substratum suggest that forward motion of the ectoplasm is enabled by a succession of stick-slip transitions, which we conjecture are also organized in the form of waves. Combining our experiments with a simplified convection-diffusion model, we show that the convective transport of calcium ions may be key for establishing and maintaining the spatiotemporal patterns of calcium concentration that regulate the generation of contractile forces.

6.
Proc Natl Acad Sci U S A ; 110(8): 2840-5, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23359696

RESUMO

Cells can sense and respond to physical properties of their surrounding extracellular matrix. We have demonstrated here that tyrosine phosphatase Shp2 plays an essential role in the response of mouse embryonic fibroblasts to matrix rigidity. On rigid surfaces, large focal adhesions (FAs) and anisotropically oriented stress fibers are formed, whereas cells plated on compliant substrates form numerous small FAs and radially oriented stress fibers. As a result, traction force is increased and organized to promote cell spreading and elongation on rigid substrates. Shp2-deficient cells do not exhibit the stiffness-dependent increase in FA size and polarized stress fibers nor the intracellular tension and cell shape change. These results indicate the involvement of Shp2 in regulating the FAs and the cytoskeleton for force maintenance and organization. The defect of FA maturation in Shp2-deficient cells was rescued by expressing Y722F Rho-associated protein kinase II (ROCKII), suggesting that ROCKII is the molecular target of Shp2 in FAs for the FA maturation. Thus, Shp2 serves as a key mediator in FAs for the regulation of structural organization and force orientation of mouse embyonic fibroblasts in determining their mechanical polarity in response to matrix rigidity.


Assuntos
Matriz Extracelular , Proteína Tirosina Fosfatase não Receptora Tipo 11/fisiologia , Animais , Movimento Celular , Forma Celular , Células Cultivadas , Adesões Focais , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 11/química
7.
Biophys J ; 108(4): 821-832, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692587

RESUMO

Fast amoeboid migration requires cells to apply mechanical forces on their surroundings via transient adhesions. However, the role these forces play in controlling cell migration speed remains largely unknown. We used three-dimensional force microscopy to measure the three-dimensional forces exerted by chemotaxing Dictyostelium cells, and examined wild-type cells as well as mutants with defects in contractility, internal F-actin crosslinking, and cortical integrity. We showed that cells pull on their substrate adhesions using two distinct, yet interconnected mechanisms: axial actomyosin contractility and cortical tension. We found that the migration speed increases when axial contractility overcomes cortical tension to produce the cell shape changes needed for locomotion. We demonstrated that the three-dimensional pulling forces generated by both mechanisms are internally balanced by an increase in cytoplasmic pressure that allows cells to push on their substrate without adhering to it, and which may be relevant for amoeboid migration in complex three-dimensional environments.


Assuntos
Actinas/metabolismo , Actomiosina/metabolismo , Quimiotaxia , Dictyostelium/metabolismo , Citoplasma/metabolismo , Dictyostelium/fisiologia
8.
Proc Natl Acad Sci U S A ; 109(28): 11110-5, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22665785

RESUMO

We use a novel 3D inter-/intracellular force microscopy technique based on 3D traction force microscopy to measure the cell-cell junctional and intracellular tensions in subconfluent and confluent vascular endothelial cell (EC) monolayers under static and shear flow conditions. We found that z-direction cell-cell junctional tensions are higher in confluent EC monolayers than those in subconfluent ECs, which cannot be revealed in the previous 2D methods. Under static conditions, subconfluent cells are under spatially non-uniform tensions, whereas cells in confluent monolayers are under uniform tensions. The shear modulations of EC cytoskeletal remodeling, extracellular matrix (ECM) adhesions, and cell-cell junctions lead to significant changes in intracellular tensions. When a confluent monolayer is subjected to flow shear stresses with a high forward component comparable to that seen in the straight part of the arterial system, the intracellular and junction tensions preferentially increase along the flow direction over time, which may be related to the relocation of adherens junction proteins. The increases in intracellular tensions are shown to be a result of chemo-mechanical responses of the ECs under flow shear rather than a direct result of mechanical loading. In contrast, the intracellular tensions do not show a preferential orientation under oscillatory flow with a very low mean shear. These differences in the directionality and magnitude of intracellular tensions may modulate translation and transcription of ECs under different flow patterns, thus affecting their susceptibility for atherogenesis.


Assuntos
Células Endoteliais/citologia , Animais , Aterosclerose , Comunicação Celular , Células Cultivadas/citologia , Matriz Extracelular/metabolismo , Análise de Elementos Finitos , Transferência Ressonante de Energia de Fluorescência , Humanos , Imageamento Tridimensional , Microscopia de Força Atômica/métodos , Microscopia Confocal/métodos , Modelos Biológicos , Modelos Estatísticos , Oscilometria/métodos , Resistência ao Cisalhamento
9.
Proc Natl Acad Sci U S A ; 105(40): 15411-6, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18840694

RESUMO

Adherent cells remodel their cytoskeleton, including its directionality, in response to directional mechanical stimuli with consequent redistribution of intracellular forces and modulation of cell function. We analyzed the temporal and spatial changes in magnitude and directionality of the cytoplasmic creep compliance (Gamma) in confluent cultures of bovine aortic endothelial cells subjected to continuous laminar flow shear stresses. We extended particle tracking microrheology to determine at each point in the cytoplasm the principal directions along which Gamma is maximal and minimal. Under static condition, the cells have polygonal shapes without specific alignment. Although Gamma of each cell exhibits directionality with varying principal directions, Gamma averaged over the whole cell population is isotropic. After continuous laminar flow shear stresses, all cells gradually elongate and the directions of maximal and minimal Gamma become, respectively, parallel and perpendicular to flow direction. This mechanical alignment is accompanied by a transition of the cytoplasm to be more fluid-like along the flow direction and more solid-like along the perpendicular direction; at the same time Gamma increases at the downstream part of the cells. The resulting directional anisotropy and spatial inhomogeneity of cytoplasmic rheology may play an important role in mechanotransduction in adherent cells by providing a means to sense the direction of mechanical stimuli.


Assuntos
Células Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Anisotropia , Bovinos , Forma Celular , Células Cultivadas , Citoplasma/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/citologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Resistência ao Cisalhamento
10.
Front Cell Dev Biol ; 9: 635263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855018

RESUMO

Leukocyte transendothelial migration is crucial for innate immunity and inflammation. Upon tissue damage or infection, leukocytes exit blood vessels by adhering to and probing vascular endothelial cells (VECs), breaching endothelial cell-cell junctions, and transmigrating across the endothelium. Transendothelial migration is a critical rate-limiting step in this process. Thus, leukocytes must quickly identify the most efficient route through VEC monolayers to facilitate a prompt innate immune response. Biomechanics play a decisive role in transendothelial migration, which involves intimate physical contact and force transmission between the leukocytes and the VECs. While quantifying these forces is still challenging, recent advances in imaging, microfabrication, and computation now make it possible to study how cellular forces regulate VEC monolayer integrity, enable efficient pathfinding, and drive leukocyte transmigration. Here we review these recent advances, paying particular attention to leukocyte adhesion to the VEC monolayer, leukocyte probing of endothelial barrier gaps, and transmigration itself. To offer a practical perspective, we will discuss the current views on how biomechanics govern these processes and the force microscopy technologies that have enabled their quantitative analysis, thus contributing to an improved understanding of leukocyte migration in inflammatory diseases.

11.
Sci Adv ; 7(29)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34261650

RESUMO

Neutrophils migrating through extravascular spaces must negotiate narrow matrix pores without losing directional movement. We investigated how chemotaxing neutrophils probe matrices and adjust their migration to collagen concentration ([col]) changes by tracking 20,000 cell trajectories and quantifying cell-generated 3D matrix deformations. In low-[col] matrices, neutrophils exerted large deformations and followed straight trajectories. As [col] increased, matrix deformations decreased, and neutrophils turned often to circumvent rather than remodel matrix pores. Inhibiting protrusive or contractile forces shifted this transition to lower [col], implying that mechanics play a crucial role in defining migratory strategies. To balance frequent turning and directional bias, neutrophils used matrix obstacles as pivoting points to steer toward the chemoattractant. The Actin Related Protein 2/3 complex coordinated successive turns, thus controlling deviations from chemotactic paths. These results offer an improved understanding of the mechanisms and molecular regulators used by neutrophils during chemotaxis in restrictive 3D environments.

12.
J Exp Biol ; 213(Pt 22): 3920-33, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21037072

RESUMO

Research on the adhesive locomotion of terrestrial gastropods is gaining renewed interest as it provides a source of guidance for the design of soft biomimetic robots that can perform functions currently not achievable by conventional rigid vehicles. The locomotion of terrestrial gastropods is driven by a train of periodic muscle contractions (pedal waves) and relaxations (interwaves) that propagate from their tails to their heads. These ventral waves interact with a thin layer of mucus secreted by the animal that transmits propulsive forces to the ground. The exact mechanism by which these propulsive forces are generated is still a matter of controversy. Specifically, the exact role played by the complex rheological and adhesive properties of the mucus is not clear. To provide quantitative data that could shed light on this question, we use a newly developed technique to measure, with high temporal and spatial resolution, the propulsive forces that terrestrial gastropods generate while crawling on smooth flat surfaces. The traction force measurements demonstrate the importance of the finite yield stress of the mucus in generating thrust and are consistent with the surface of the ventral foot being lifted with the passage of each pedal wave. We also show that a forward propulsive force is generated beneath each stationary interwave and that this net forward component is balanced by the resistance caused by the outer rim of the ventral foot, which slides at the speed of the center of mass of the animal. Simultaneously, the animal pulls the rim laterally inward. Analysis of the traction forces reveals that the kinematics of the pedal waves is far more complex than previously thought, showing significant spatial variation (acceleration/deceleration) as the waves move from the tail to the head of the animal.


Assuntos
Gastrópodes/fisiologia , Locomoção/fisiologia , Adesividade , Animais , Fenômenos Biomecânicos , Fenômenos Biofísicos , Peso Corporal , Gastrópodes/anatomia & histologia , Modelos Biológicos , Caramujos/anatomia & histologia , Caramujos/fisiologia , Estresse Mecânico
13.
Pulm Circ ; 10(2): 2045894020922118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32489641

RESUMO

The risk and progression of pulmonary vascular disease in patients with congenital heart disease is dependent on the hemodynamics associated with different lesions. However, the underlying mechanisms are not understood. Endothelin-1 is a potent vasoconstrictor that plays a key role in the pathology of pulmonary vascular disease. We utilized two ovine models of congenital heart disease: (1) fetal aortopulmonary graft placement (shunt), resulting in increased flow and pressure; and (2) fetal ligation of the left pulmonary artery resulting in increased flow and normal pressure to the right lung, to investigate the hypothesis that high pressure and flow, but not flow alone, upregulates endothelin-1 signaling. Lung tissue and pulmonary arterial endothelial cells were harvested from control, shunt, and the right lung of left pulmonary artery lambs at 3-7 weeks of age. We found that lung preproendothelin-1 mRNA and protein expression were increased in shunt lambs compared to controls. Preproendothelin-1 mRNA expression was modestly increased, and protein was unchanged in left pulmonary artery lambs. These changes resulted in increased lung endothelin-1 levels in shunt lambs, while left pulmonary artery levels were similar to controls. Pulmonary arterial endothelial cells exposed to increased shear stress decreased endothelin-1 levels by five-fold, while cyclic stretch increased levels by 1.5-fold. These data suggest that pressure or an additive effect of pressure and flow, rather than increased flow alone, is the principal driver of increased endothelin signaling in congenital heart disease. Defining the molecular drivers of the pathobiology of pulmonary vascular disease due to differing mechanical forces will allow for a more targeted therapeutic approach.

14.
J R Soc Interface ; 16(150): 20180675, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958153

RESUMO

Schistosomiasis is a chronic and morbid disease of poverty affecting approximately 200 million people worldwide. Mature schistosome flatworms wander in the host's hepatic portal and mesenteric venous system where they encounter a range of blood flow conditions and geometrical confinement. However, the mechanisms that support schistosome locomotion and underlie the pathogen's adaptation to its physical environment are largely unknown. By combining microfabrication and traction force microscopy, we developed various in vitro assays to quantify the mechanics of locomotion of adult male Schistosoma mansoni in different physiologically relevant conditions. We show that in unconfined settings, the parasite undergoes two-anchor marching mediated by the coordinated action of its oral and ventral suckers. This mode of locomotion is maintained when the worm faces an external flow, to which it responds by adjusting the strength of its suckers. In geometrically confined conditions, S. mansoni switches to a different crawling modality by generating retrograde peristaltic waves along its body, a mechanism shared with terrestrial and marine worms. However, while the surface of most worms has backward-pointing bristles that rectify peristaltic waves and facilitate forward locomotion, S. mansoni has isotropically oriented tubercles. This requires tight coordination between muscle contraction and substrate friction but gives S. mansoni the ability to reverse its direction of locomotion without turning its body, which is likely advantageous to manoeuvre in narrow-bore vessels. We show that the parasite can also coordinate the action of its suckers with its peristaltic body contractions to increase crawling speed. Throughout this study, we report on a number of biomechanical parameters to quantify the motility of adult schistosomes (e.g. sucker grabbing strength, the rate of detachment under flow, peristaltic wave properties and traction stresses). The new series of in vitro assays make it possible to quantify key phenotypical aspects of S. mansoni motility that could guide the discovery of new drugs to treat schistosomiasis.


Assuntos
Locomoção/fisiologia , Modelos Biológicos , Schistosoma mansoni/fisiologia , Animais , Masculino
15.
Sci Rep ; 7: 39315, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28074837

RESUMO

Cellular traction force microscopy (TFM) requires knowledge of the mechanical properties of the substratum where the cells adhere to calculate cell-generated forces from measurements of substratum deformation. Polymer-based hydrogels are broadly used for TFM due to their linearly elastic behavior in the range of measured deformations. However, the calculated stresses, particularly their spatial patterns, can be highly sensitive to the substratum's Poisson's ratio. We present two-layer elastographic TFM (2LETFM), a method that allows for simultaneously measuring the Poisson's ratio of the substratum while also determining the cell-generated forces. The new method exploits the analytical solution of the elastostatic equation and deformation measurements from two layers of the substratum. We perform an in silico analysis of 2LETFM concluding that this technique is robust with respect to TFM experimental parameters, and remains accurate even for noisy measurement data. We also provide experimental proof of principle of 2LETFM by simultaneously measuring the stresses exerted by migrating Physarum amoeboae on the surface of polyacrylamide substrata, and the Poisson's ratio of the substrata. The 2LETFM method could be generalized to concurrently determine the mechanical properties and cell-generated forces in more physiologically relevant extracellular environments, opening new possibilities to study cell-matrix interactions.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Força Atômica/métodos , Physarum/citologia , Tração
16.
Ultrasound Med Biol ; 32(9): 1307-13, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16965970

RESUMO

The aim was to evaluate the potential of contrast-enhanced ultrasound to visualize the hemodynamics in intracranial aneurysms during neurosurgical intervention and to quantify the ultrasound data using digital particle image velocimetry (DPIV) technique. Aneurysms were scanned through the intact dura mater, preclipping and again postclipping after closure of the dura. After intravenous injection of Optison, angio-like views of the vascular tree surrounding the aneurysm, including the aneurysm sac, were obtained. Single ultrasound contrast agent microbubbles could be visualized in the aneurysm sac and the flow dynamics could be assessed in vivo. Spatial and temporal distributions of the velocity in the aneurysm and in the parent vessels were measured with DPIV using the backscattered signals from the microbubbles. Subsequently, the fluid stresses, vorticity, circulation, etc., were calculated from the velocity fields. We demonstrate in this paper that intraoperative contrast-enhanced ultrasound can be used to quantify the flow dynamics within an aneurysm.


Assuntos
Circulação Cerebrovascular , Aneurisma Intracraniano/diagnóstico por imagem , Cuidados Intraoperatórios/métodos , Albuminas , Velocidade do Fluxo Sanguíneo , Meios de Contraste , Ecoencefalografia/métodos , Fluorocarbonos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aneurisma Intracraniano/fisiopatologia , Aneurisma Intracraniano/cirurgia , Microbolhas , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/cirurgia
17.
Mol Biol Cell ; 27(8): 1262-71, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26912787

RESUMO

Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion ofDictyosteliumtandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I-coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs' reuse results from the mechanical synchronization of the leading and trailing cells' protrusions and retractions (motility cycles) aided by the cell-cell adhesions.


Assuntos
Dictyostelium/citologia , Fenômenos Biomecânicos , Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Movimento Celular/fisiologia , Dictyostelium/genética , Discoidinas/genética , Discoidinas/metabolismo
18.
AJNR Am J Neuroradiol ; 26(4): 904-7, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15814942

RESUMO

BACKGROUND AND PURPOSE: The purpose of this study was to measure the changes in the intraaneurysmal fluid pressure and parent vessel flow characteristics resulting from packing the aneurysmal sac with hydrogel-coated coils. METHODS: Platinum coils coated with an expansible hydrogel were used to embolize a silicone model of the basilar tip aneurysm. The intraaneurysmal fluid pressure was measured with a NeuroCare Camino Pressure Micro-Probe at various packing ratios. A programmable pulsatile pump was used to input a physiologically relevant pulsatile flow in the parent artery. RESULTS: The intraaneurysmal fluid pressure did not increase when packing the aneurysm with hydrogel-coated platinum coils, even with a coil density up to 93%. CONCLUSION: Packing the aneurysm with hydrogel-coated coils at a density up to 93% did not increase the intraaneurysmal fluid pressure.


Assuntos
Embolização Terapêutica , Hidrogel de Polietilenoglicol-Dimetacrilato , Aneurisma Intracraniano/fisiopatologia , Pressão Sanguínea , Embolização Terapêutica/efeitos adversos , Embolização Terapêutica/instrumentação
19.
J Neurosurg ; 103(1): 146-55, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16121985

RESUMO

OBJECT: The aim of this study was to measure changes in intraaneurysm flow dynamics and mechanical stresses resulting from the placement of Neuroform stents in bifurcating intracranial aneurysm models. METHODS: A digital particle image velocimetry (DPIV) system was used to measure the pulsatile velocity and shear stress fields within the aneurysm and at the aneurysm neck-parent artery interface. The DPIV system provides an instantaneous two-dimensional measurement of the temporal and spatial variations of the velocity vector field of the flow inside the aneurysm pouch and the parent vessel, providing information on both the temporal and spatial variations of the velocity field during the entire cardiac cycle. The corresponding shear stress field was then computed from the velocity field data. A flexible silicone model of bifurcating intracranial aneurysms was used. Two Neuroform stents with a 60- to 65-microm strut thickness and an 11% metal/artery ratio were placed in a Y-configuration, and measurements were obtained after placing the stents. CONCLUSIONS: Two three-dimensional vortices of different strengths persisted within the aneurysm during the entire cardiac cycle. The peak velocity and strength of these vortices were reduced after placing the two bifurcating stents. The effect of placing the Neuroform stent across the neck of a bifurcating intracranial aneurysm was shown to reduce the magnitude of the velocity of the jet entering the sac by as much as 11%. Nevertheless, the effect of the stents was particularly noticeable at the end of the cardiac cycle, when the residual vorticity and shear stresses inside the sac were decreased by more than 40%.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Aneurisma Intracraniano/fisiopatologia , Fluxo Pulsátil/fisiologia , Stents , Circulação Cerebrovascular/fisiologia , Humanos , Modelos Cardiovasculares , Reologia , Resistência ao Cisalhamento , Silício
20.
J Neurosurg ; 103(5): 891-902, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16304994

RESUMO

OBJECT: The goal of this study was to quantify the reduction in velocity, vorticity, and shear stresses resulting from the sequential placement of stents across the neck of sidewall cerebral aneurysms. METHODS: A digital particle image velocimetry (DPIV) system was used to measure the pulsatile velocity field within a flexible silicone sidewall intracranial aneurysm model and at the aneurysm neck-parent artery interface in this model. The DPIV system is capable of providing an instantaneous, quantitative two-dimensional measurement of the velocity vector field of "blood" flow inside the aneurysm pouch and the parent vessel, and its changes at varying stages of the cardiac cycle. The corresponding vorticity and shear stress fields are then computed from the velocity field data. Three Neuroform stents (Boston Scientific/Target), each with a strut thickness between 60 and 65 microm, were subsequently placed across the neck of the aneurysm model and measurements were obtained after each stent had been placed. The authors measured a consistent decrease in the values of the maximal averaged velocity, vorticity, and shear stress after placing one, two, and three stents. Measurements of the circulation inside the sac demonstrated a systematic reduction in the strength of the vortex due to the stent placement. The decrease in the magnitude of the aforementioned quantities after the first stent was placed was remarkable. Placement of two or three stents led to a less significant reduction than placement of the first stent. CONCLUSIONS: The use of multiple flexible intravascular stents effectively reduces the strength of the vortex forming in an aneurysm sac and results in a decrease in the magnitude of stresses acting on the aneurysm wall.


Assuntos
Circulação Cerebrovascular , Aneurisma Intracraniano/fisiopatologia , Aneurisma Intracraniano/cirurgia , Modelos Cardiovasculares , Stents , Humanos , Técnicas In Vitro , Resistência ao Cisalhamento , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA