Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 9(4): e95362, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24759684

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurodegenerative disease characterized by loss of motor coordination and retinal degeneration with no current therapies in the clinic. The causative mutation is an expanded CAG repeat in the ataxin-7 gene whose mutant protein product causes cerebellar and brainstem degeneration and retinal cone-rod dystrophy. Here, we reduced the expression of both mutant and wildtype ataxin-7 in the SCA7 mouse retina by RNA interference and evaluated retinal function 23 weeks post injection. We observed a preservation of normal retinal function and no adverse toxicity with ≥50% reduction of mutant and wildtype ataxin-7 alleles. These studies address an important safety concern regarding non-allele specific silencing of ataxin-7 for SCA7 retinal therapy.


Assuntos
Interferência de RNA/fisiologia , Degeneração Retiniana/terapia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Animais , Ataxina-7 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Degeneração Retiniana/genética
2.
Nat Commun ; 1: 110, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21045828

RESUMO

The discovery of α-synuclein (αS) mutations has made a major contribution to the understanding of the pathogenesis of α-synucleinopathies such as Parkinson's disease and dementia with Lewy bodies (DLB). In contrast, less attention has been paid to ß-synuclein (ßS) mutations. In this paper, we show that transgenic (tg) mice expressing DLB-linked P123H ßS develop progressive neurodegeneration, as characterized by axonal swelling, astrogliosis and behavioural abnormalities, with memory disorder being more prominent than motor deficits. Furthermore, cross-breeding of P123H ßS tg mice with αS tg mice, but not with αS knockout mice, greatly enhanced neurodegeneration phenotypes. These results suggest that P123H ßS is pathogenic and cooperates with pathogenic αS to stimulate neurodegeneration in mouse brain, indicating a causative role of P123H ßS in familial DLB. Given the neuritic pathology of ßS in sporadic α-synucleinopathies, it appears that alteration of ßS can contribute to the pathogenesis of a broad range of α-synucleinopathies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA