Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 153, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982460

RESUMO

Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Vegetal , Precursores de RNA , Splicing de RNA , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética
2.
Mol Plant ; 17(5): 807-823, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38664971

RESUMO

The plant apoplast, which serves as the frontline battleground for long-term host-pathogen interactions, harbors a wealth of disease resistance resources. However, the identification of the disease resistance proteins in the apoplast is relatively lacking. In this study, we identified and characterized the rice secretory protein OsSSP1 (Oryza sativa secretory small protein 1). OsSSP1 can be secreted into the plant apoplast, and either in vitro treatment of recombinant OsSSP1 or overexpression of OsSSP1 in rice could trigger plant immune response. The expression of OsSSP1 is suppressed significantly during Magnaporthe oryzae infection in the susceptible rice variety Taibei 309, and OsSSP1-overexpressing lines all show strong resistance to M. oryzae. Combining the knockout and overexpression results, we found that OsSSP1 positively regulates plant immunity in response to fungal infection. Moreover, the recognition and immune response triggered by OsSSP1 depend on an uncharacterized transmembrane OsSSR1 (secretory small protein receptor 1) and the key co-receptor OsBAK1, since most of the induced immune response and resistance are lost in the absence of OsSSR1 or OsBAK1. Intriguingly, the OsSSP1 protein is relatively stable and can still induce plant resistance after 1 week of storage in the open environment, and exogenous OsSSP1 treatment for a 2-week period did not affect rice yield. Collectively, our study reveals that OsSSP1 can be secreted into the apoplast and percepted by OsSSR1 and OsBAK1 during fungal infection, thereby triggering the immune response to enhance plant resistance to M. oryzae. These findings provide novel resources and potential strategies for crop breeding and disease control.


Assuntos
Resistência à Doença , Oryza , Doenças das Plantas , Proteínas de Plantas , Oryza/microbiologia , Oryza/genética , Oryza/metabolismo , Oryza/imunologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Magnaporthe/fisiologia , Ascomicetos/fisiologia
3.
Front Genet ; 14: 1136688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999059

RESUMO

Dalbergia sissoo is one of the most economically important trees in forestry, agroforestry, and horticulture. This tree species is severely threatened by dieback. Widespread dieback outbreaks and infestations have drastically destroyed billions of D. sissoo trees. Hence, we attempted to resolve the dieback etiology through phylogenomics associated with D. sissoo mortality. The Ceratocystis species was evaluated using morphologically investigated fungal isolates collected from dieback-affected tissue plants. Based on the symptomatology, we have differentiated dieback from Fusarium wilt and concluded that the Ceratocystis fimbriata sensu lato complex is causing shisham dieback in Pakistan. As the Ceratocystis species complex is a cryptic species complex, we used genomics and phylogenetic analysis for deciphering its evolutionary hierarchical order. The pathogen's operational taxonomy was unlocked with the help of phylogenomics, and it was discovered that isolates from D. sissoo represent a species distinct from the other species in the C. fimbriata sensu lato species complex. The name Ceratocystis dalbergicans sp. nov. has been given to the fungus causing dieback disease in D. sissoo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA