Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Immun ; 82(10): 4080-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25024365

RESUMO

Clostridium difficile-associated disease (CDAD) constitutes a large majority of nosocomial diarrhea cases in industrialized nations and is mediated by the effects of two secreted toxins, toxin A (TcdA) and toxin B (TcdB). Patients who develop strong antitoxin antibody responses can clear C. difficile infection and remain disease free. Key toxin-neutralizing epitopes have been found within the carboxy-terminal receptor binding domains (RBDs) of TcdA and TcdB, which has generated interest in developing the RBD as a viable vaccine target. While numerous platforms have been studied, very little data describes the potential of DNA vaccination against CDAD. Therefore, we created highly optimized plasmids encoding the RBDs from TcdA and TcdB in which any putative N-linked glycosylation sites were altered. Mice and nonhuman primates were immunized intramuscularly, followed by in vivo electroporation, and in these animal models, vaccination induced significant levels of both anti-RBD antibodies (blood and stool) and RBD-specific antibody-secreting cells. Further characterization revealed that sera from immunized mice and nonhuman primates could detect RBD protein from transfected cells, as well as neutralize purified toxins in an in vitro cytotoxicity assay. Mice that were immunized with plasmids or given nonhuman-primate sera were protected from a lethal challenge with purified TcdA and/or TcdB. Moreover, immunized mice were significantly protected when challenged with C. difficile spores from homologous (VPI 10463) and heterologous, epidemic (UK1) strains. These data demonstrate the robust immunogenicity and efficacy of a TcdA/B RBD-based DNA vaccine in preclinical models of acute toxin-associated and intragastric, spore-induced colonic disease.


Assuntos
Anticorpos Antibacterianos/sangue , Antitoxinas/sangue , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Enterotoxinas/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Proteção Cruzada , Eletroforese , Enterotoxinas/genética , Feminino , Injeções Intramusculares , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sobrevida , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
2.
Mol Ther ; 18(12): 2182-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20877342

RESUMO

A universal influenza vaccine, designed to induce broadly cross-reactive immunity against current and future influenza A virus strains, is in critical demand to reduce the need for annual vaccinations with vaccines chosen upon predicting the predominant circulating viral strains, and to ameliorate the threat of cyclically occurring pandemics that have, in the past, killed tens of millions. Here, we describe a vaccine regimen based on sequential immunization with two serologically distinct chimpanzee-derived replication-defective adenovirus (Ad) vectors expressing the matrix-2 protein ectodomain (M2e) from three divergent strains of influenza A virus fused to the influenza virus nucleoprotein (NP) for induction of antibodies to M2e and virus-specific CD8(+) T cells to NP. In preclinical mouse models, the Ad vaccines expressing M2e and NP elicit robust NP-specific CD8(+) T-cell responses and moderate antibody responses to all three M2e sequences. Most importantly, vaccinated mice are protected against morbidity and mortality following challenge with high doses of different influenza virus strains. Protection requires both antibodies to M2e and cellular immune responses to NP.


Assuntos
Adenoviridae , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana/prevenção & controle , Nucleoproteínas/metabolismo , Proteínas da Matriz Viral/metabolismo , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Humanos , Vírus da Influenza A/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA