Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; : e202402636, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109460

RESUMO

In this work, we report the syntheses of three Pt(II) emitters, namely, Pt4N1, Pt4N2, and Pt4N3, to which their tetradentate chelates were assembled by linking two pyrazolate chelates with a single xylenylamino entity. Functionalization of Pt4N1 was achieved upon addition of electronegative CF3 substituent on pyridinyl groups and switching to more electron deficient pyrazinyl groups in giving Pt4N2 and Pt4N3, respectively. The vertical arranged xylenylamino entity has effectively suppressed the inter-molecular π-π stacking and Pt···Pt interaction, as shown by the single crystal X-ray structural analyses. Upon fabrication of OLED devices, Pt4N2 and Pt4N3 based devices delivered efficient cyan and green emission, with an EQEmax of 15.2% and 11.2%, respectively, affirming the successfulness of the tetradentate chelating strategy.

3.
Adv Sci (Weinh) ; 11(26): e2309389, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38689505

RESUMO

Ir(III) carbene complexes have been explored as one of the best blue phosphors for their high performance. Herein, the authors designed and synthesized a series of blue-emitting Ir(III) phosphors (f-ct9a-c), featuring fac-coordinated cyano-imidazo[4,5-b]pyridin-2-ylidene cyclometalates. These Ir(III) complexes exhibit true-blue emission with a peak maximum spanning 448-467 nm, with high photoluminescence quantum yields of 81-88% recorded in degassed toluene. Moreover, OLED devices bearing phosphors f-ct9a and f-ct9b deliver maximum external quantum efficiencies (EQEmax) of 25.9% and 30.3%, together with Commission Internationale de L'Eclairage (CIEx,y) coordinates of (0.157, 0.225) and (0.142, 0.169), respectively. Remarkably, the f-ct9b-based device displays an incredible EQE of 29.0% at 5000 cd·m-2. The hyper-OLED device based on f-ct9b and ν-DABNA exhibits an EQEmax of 34.7% and CIEx,y coordinates of (0.122, 0.131), affirming high potentials in achieving efficient blue electroluminescence.

4.
Small Methods ; : e2301555, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185747

RESUMO

Iridium(III) complexes are particularly noted for their excellent potentials in fabrication of blue organic light-emitting diodes (OLEDs), but the severe efficiency roll-off largely hampered their practical applications. To reveal the underlying characteristics, three Ir(III) complexes, namely f-ct5c, f-ct5d, and f-ct11, bearing imidazo[4,5-b]pyrazin-2-ylidene cyclometalates are prepared and characterized in detail. Both f-ct5c and f-ct5d (also their mixture f-ct5mix) gave intensive blue emissions peaking at ≈465 nm with short radiative lifetimes of 1.76 and 2.45 µs respectively, in degassed toluene. Alternatively, f-ct11 with two 4-tert-butylphenyl substituents on each imidazo[4,5-b]pyrazin-2-ylidene entity, possessed a bluish-green emission (508 nm) together with an extended radiative lifetime of 34.3 µs in the dispersed PMMA matrix. Consequently, the resulting solution-processed OLED with f-ct11 delivered a maximum external quantum efficiency (EQEmax ) of 6.5% with serious efficiency roll-offs. In contrast, f-ct5mix based device achieved a high EQEmax of 27.2% and the EQE maintained at 23.0% of 1000 cd m-2 . Furthermore, the hyper-OLEDs with f-ct5mix as the sensitizer and v-DABNA as the terminal emitter afford narrowed emission with a considerably high EQEmax exceeding 32%, affirming the potential of f-ct5mix to serve as both the emitter and sensitizer in OLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA