Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 39(9): 1558-1568, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215622

RESUMO

The nonparaxial interference and diffraction by a planar array of emitters have been recently described in terms of the light energy confinement in Lorentzian wells, which are spatially structured by the geometric potential, activated in turn by the two-point correlation prepared at the array plane. Nevertheless, the use of nonplanar arrays of light emitters is of increasing interest in optical technology. Therefore, we extend the confinement model to include spatially structured Lorentzian wells by geometric potentials associated with nonplanar distributions of points. Such geometric potentials are activated by two-point correlations with 3D supports prepared at the nonplanar array. The theoretical analysis is supported and illustrated by numerical simulations.

2.
Appl Opt ; 59(13): D21-D30, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400619

RESUMO

Nonparaxial modeling of optical field propagation at distances comparable to the wavelength and under arbitrary spatial coherence is crucial for micro- and nano-optics. Fourier and Fresnel transform-based algorithms are unable to simulate it accurately because of their paraxial approach. A nonparaxial matrix algorithm, supported by the theoretical model that characterizes the optical field and the setup configuration in terms of sets of real and virtual point emitters, is capable of simulating the 3D optical field distribution in the volume delimited by the input and the output planes placed at a very short distance from each other by using experimental data as entries. The algorithm outcomes are accurate predictions of the power spectrum of interference and diffraction experiments. Simulations of specific experimental situations, including speckle phenomena, illustrate the algorithm's capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA