Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769167

RESUMO

Neurological dysfunction following viral infection varies among individuals, largely due to differences in their genetic backgrounds. Gait patterns, which can be evaluated using measures of coordination, balance, posture, muscle function, step-to-step variability, and other factors, are also influenced by genetic background. Accordingly, to some extent gait can be characteristic of an individual, even prior to changes in neurological function. Because neuromuscular aspects of gait are under a certain degree of genetic control, the hypothesis tested was that gait parameters could be predictive of neuromuscular dysfunction following viral infection. The Collaborative Cross (CC) mouse resource was utilized to model genetically diverse populations and the DigiGait treadmill system used to provide quantitative and objective measurements of 131 gait parameters in 142 mice from 23 CC and SJL/J strains. DigiGait measurements were taken prior to infection with the neurotropic virus Theiler's Murine Encephalomyelitis Virus (TMEV). Neurological phenotypes were recorded over 90 days post-infection (d.p.i.), and the cumulative frequency of the observation of these phenotypes was statistically associated with discrete baseline DigiGait measurements. These associations represented spatial and postural aspects of gait influenced by the 90 d.p.i. phenotype score. Furthermore, associations were found between these gait parameters with sex and outcomes considered to show resistance, resilience, or susceptibility to severe neurological symptoms after long-term infection. For example, higher pre-infection measurement values for the Paw Drag parameter corresponded with greater disease severity at 90 d.p.i. Quantitative trait loci significantly associated with these DigiGait parameters revealed potential relationships between 28 differentially expressed genes (DEGs) and different aspects of gait influenced by viral infection. Thus, these potential candidate genes and genetic variations may be predictive of long-term neurological dysfunction. Overall, these findings demonstrate the predictive/prognostic value of quantitative and objective pre-infection DigiGait measurements for viral-induced neuromuscular dysfunction.


Assuntos
Theilovirus , Viroses , Camundongos , Animais , Viroses/genética , Camundongos Endogâmicos , Locos de Características Quantitativas , Marcha
2.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142395

RESUMO

A wide range of viruses cause neurological manifestations in their hosts. Infection by neurotropic viruses as well as the resulting immune response can irreversibly disrupt the complex structural and functional architecture of the brain, depending in part on host genetic background. The interaction between host genetic background, neurological response to viral infection, and subsequent clinical manifestations remains poorly understood. In the present study, we used the genetically diverse Collaborative Cross (CC) mouse resource to better understand how differences in genetic background drive clinical signs and neuropathological manifestations of acute Theiler's murine encephalomyelitis virus (TMEV) infection. For the first time, we characterized variations of TMEV viral tropism and load based on host genetic background, and correlated viral load with microglial/macrophage activation. For five CC strains (CC002, CC023, CC027, CC057, and CC078) infected with TMEV, we compared clinical signs, lesion distribution, microglial/macrophage response, expression, and distribution of TMEV mRNA, and identified genetic loci relevant to the early acute (4 days post-infection [dpi]) and late acute (14 dpi) timepoints. We examined brain pathology to determine possible causes of strain-specific differences in clinical signs, and found that fields CA1 and CA2 of the hippocampal formation were especially targeted by TMEV across all strains. Using Iba-1 immunolabeling, we identified and characterized strain- and timepoint-specific variation in microglial/macrophage reactivity in the hippocampal formation. Because viral clearance can influence disease outcome, we used RNA in situ hybridization to quantify viral load and TMEV mRNA distribution at both timepoints. TMEV mRNA expression was broadly distributed in the hippocampal formation at 4 dpi in all strains but varied between radiating and clustered distribution depending on the CC strain. We found a positive correlation between microglial/macrophage reactivity and TMEV mRNA expression at 4 dpi. At 14 dpi, we observed a dramatic reduction in TMEV mRNA expression, and localization to the medial portion of field CA1 and field CA2. To better understand how host genetic background can influence pathological outcomes, we identified quantitative trait loci associated with frequency of lesions in a particular brain region and with microglial/macrophage reactivity. These QTL were located near several loci of interest: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1), and transmembrane protein 106 B (Tmem106b). Together, these results provide a novel understanding about the influences of genetic variation on the acute neuropathological and immunopathological environment and viral load, which collectively lead to variable disease outcomes. Our findings reveal possible avenues for future investigation which may lead to more effective intervention strategies and treatment regimens.


Assuntos
Theilovirus , Animais , Patrimônio Genético , Camundongos , Doenças Neuroinflamatórias , RNA , RNA Mensageiro , Theilovirus/genética
3.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768809

RESUMO

Virus-induced neurological sequelae resulting from infection by Theiler's murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. Mouse strains are typically considered susceptible or resistant to TMEV infection based on viral persistence and extreme phenotypes, such as demyelination. We have identified a broader spectrum of phenotypic outcomes by infecting strains of the genetically diverse Collaborative Cross (CC) mouse resource. We evaluated the chronic-infection gene expression profiles of hippocampi and thoracic spinal cords for 19 CC strains in relation to phenotypic severity and TMEV persistence. Strains were clustered based on similar phenotypic profiles and TMEV levels at 90 days post-infection, and we categorized distinct TMEV response profiles. The three most common profiles included "resistant" and "susceptible," as before, as well as a "resilient" TMEV response group which experienced both TMEV persistence and mild neurological phenotypes even at 90 days post-infection. Each profile had a distinct gene expression signature, allowing the identification of pathways and networks specific to each TMEV response group. CC founder haplotypes for genes involved in these pathways/networks revealed candidate response-specific alleles. These alleles demonstrated pleiotropy and epigenetic (miRNA) regulation in long-term TMEV infection, with particular relevance for resilient mouse strains.


Assuntos
Infecções por Cardiovirus/genética , Regulação da Expressão Gênica , Hipocampo/metabolismo , Medula Espinal/metabolismo , Theilovirus , Animais , Doenças Desmielinizantes , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Masculino , Camundongos , Análise de Sequência de RNA
4.
Nat Commun ; 15(1): 98, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167733

RESUMO

Behavioral variation abounds in nature. This variation is important for adaptation and speciation, but its molecular basis remains elusive. Here, we use a hybrid zone between two subspecies of songbirds that differ in migration - an ecologically important and taxonomically widespread behavior---to gain insight into this topic. We measure gene expression in five brain regions. Differential expression between migratory states was dominated by circadian genes in all brain regions. The remaining patterns were largely brain-region specific. For example, expression differences between the subspecies that interact with migratory state likely help maintain reproductive isolation in this system and were documented in only three brain regions. Contrary to existing work on regulatory mechanisms underlying species-specific traits, two lines of evidence suggest that trans- (vs. cis) regulatory changes underlie these patterns - no evidence for allele-specific expression in hybrids and minimal associations between genomic differentiation and expression differences. Additional work with hybrids shows expression levels were often distinct (transgressive) from parental forms. Behavioral contrasts and functional enrichment analyses allowed us to connect these patterns to mitonuclear incompatibilities and compensatory responses to stress that could exacerbate selection on hybrids and contribute to speciation.


Assuntos
Aves Canoras , Animais , Aves Canoras/genética , Regulação da Expressão Gênica , Genoma , Genômica , Especiação Genética , Hibridização Genética , Isolamento Reprodutivo
5.
Front Physiol ; 13: 876205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492616

RESUMO

Birdsong has long been a subject of extensive research in the fields of ethology as well as neuroscience. Neural and behavioral mechanisms underlying song acquisition and production in male songbirds are particularly well studied, mainly because birdsong shares some important features with human speech such as critical dependence on vocal learning. However, birdsong, like human speech, primarily functions as communication signals. The mechanisms of song perception and recognition should also be investigated to attain a deeper understanding of the nature of complex vocal signals. Although relatively less attention has been paid to song receivers compared to signalers, recent studies on female songbirds have begun to reveal the neural basis of song preference. Moreover, there are other studies of song preference in juvenile birds which suggest possible functions of preference in social context including the sensory phase of song learning. Understanding the behavioral and neural mechanisms underlying the formation, maintenance, expression, and alteration of such song preference in birds will potentially give insight into the mechanisms of speech communication in humans. To pursue this line of research, however, it is necessary to understand current methodological challenges in defining and measuring song preference. In addition, consideration of ultimate questions can also be important for laboratory researchers in designing experiments and interpreting results. Here we summarize the current understanding of song preference in female and juvenile songbirds in the context of Tinbergen's four questions, incorporating results ranging from ethological field research to the latest neuroscience findings. We also discuss problems and remaining questions in this field and suggest some possible solutions and future directions.

6.
J Comp Neurol ; 530(10): 1622-1633, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35073426

RESUMO

Decision making resides at the interface between sensory perception and movement production. Female songbirds in the context of mate choice are an excellent system to define neural circuits through which sensory perception influences production of courtship behaviors. Previous experiments by our group and others have implicated secondary auditory brain sites, including the caudal nidopallium (NC), in mediating behavioral indicators of mate choice. Here, we used anterograde tracer molecules to define projections that emerge from NC in female songbirds, identifying pathways through which NC influences downstream sites implicated in signal processing and decision making. Our results reveal that NC sends projections into the arcopallium, including the ventral intermediate arcopallium (AIV). Previous work revealed that AIV also receives input from another auditory area implicated in song preference and mate choice (caudal mesopallium, CM), suggesting that convergent input from multiple auditory areas may play important roles in initiating mate choice behaviors. In the present results, NC projects to an area implicated in postural and locomotory control (dorsal arcopallium, Ad), suggesting that NC may play a role in directing those forms of copulatory behavior. NC projections also systematically avoid a vocal motor region of the arcopallium that is innervated by CM (robust nucleus of the arcopallium). These results suggest a model in which both NC and CM project to arcopallial pathways implicated in behavioral motivation. These brain regions may exert different influences on pathways through which auditory information can direct different facets of behavioral responses to information detected in those auditory signals.


Assuntos
Tentilhões , Aves Canoras , Animais , Percepção Auditiva/fisiologia , Mapeamento Encefálico , Feminino , Tentilhões/fisiologia , Motivação , Percepção , Aves Canoras/fisiologia , Vocalização Animal/fisiologia
7.
Front Neural Circuits ; 16: 994548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262747

RESUMO

Animals use a variety of complex signaling mechanisms to convey an array of information that can be detected by conspecifics and heterospecifics. Receivers of those signals perceive that information and use it to direct their subsequent actions. Thus, communication such as that which occurs between senders and receivers of vocal communication signals can be a powerful model in which to investigate the neural basis of sensory perception and action initiation that underlie decision-making. In this study, we investigated how female songbirds perceive the quality of acoustic signals (songs) performed by males and use that information to express preference for one song among many possible alternatives. We use behavioral measurement of song preference before and after lesion-induced alteration of activity in an auditory processing area (caudal nidopallium, NC) for which we have previously described its interconnections with other auditory areas and downstream reward pathways. Our findings reveal that inactivating NC does not change a female's ability or willingness to perform behavioral indicators of mate choice, nor does it change their ability to identify the songs of individual males. However, lesioning NC does induce a decrease in the strength of song preference for specific males more than others. That decrease does not result in a complete elimination of preference, as female preferences for specific males are still evident but not as strongly expressed after lesioning of NC. Taken together, these data indicate that NC plays a role in a female's strength of preference in song evaluation and mate choice, and activity in NC is an important facet of mate choice.


Assuntos
Córtex Auditivo , Aves Canoras , Masculino , Animais , Feminino , Aves Canoras/fisiologia , Vocalização Animal/fisiologia , Percepção Auditiva , Neurônios , Estimulação Acústica
8.
Cells ; 11(13)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35805128

RESUMO

Viral infections contribute to neurological and immunological dysfunction driven by complex genetic networks. Theiler's murine encephalomyelitis virus (TMEV) causes neurological dysfunction in mice and can model human outcomes to viral infections. Here, we used genetically distinct mice from five Collaborative Cross mouse strains and C57BL/6J to demonstrate how TMEV-induced immune responses in serum may predict neurological outcomes in acute infection. To test the hypothesis that serum cytokine levels can provide biomarkers for phenotypic outcomes of acute disease, we compared cytokine levels at pre-injection, 4 days post-injection (d.p.i.), and 14 d.p.i. Each strain produced unique baseline cytokine levels and had distinct immune responses to the injection procedure itself. Thus, we eliminated the baseline responses to the injection procedure itself and identified cytokines and chemokines induced specifically by TMEV infection. Then, we identified strain-specific longitudinal cytokine profiles in serum during acute disease. Using stepwise regression analysis, we identified serum immune markers predictive for TMEV-induced neurological phenotypes of the acute phase, e.g., IL-9 for limb paralysis; and TNF-α, IL-1ß, and MIP-1ß for limb weakness. These findings indicate how temporal differences in immune responses are influenced by host genetic background and demonstrate the potential of serum biomarkers to track the neurological effects of viral infection.


Assuntos
Theilovirus , Viroses , Doença Aguda , Animais , Citocinas , Camundongos , Camundongos Endogâmicos C57BL
9.
Brain Behav Immun Health ; 18: 100395, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917987

RESUMO

Infection by a single virus can evoke diverse immune responses, resulting in different neurological outcomes, depending on the host's genetic background. To study heterogenous viral response, we use Theiler's Murine Encephalomyelitis Virus (TMEV) to model virally induced neurological phenotypes and immune responses in Collaborative Cross (CC) mice. The CC resource consists of genetically distinct and reproducible mouse lines, thus providing a population model with genetic heterogeneity similar to humans. We examined different CC strains for the effect of chronic stage TMEV-induced immune responses on neurological outcomes throughout 90 days post infection (dpi), with a particular focus on limb paralysis, by measuring serum levels of 23 different cytokines and chemokines. Each CC strain demonstrated a unique set of immune responses, regardless of presence or absence of TMEV RNA. Using stepwise regression, significant associations were identified between IL-1α, RANTES, and paralysis frequency scores. To better understand these interactions, we evaluated multiple aspects of the different CC genetic backgrounds, including haplotypes of genomic regions previously linked with TMEV pathogenesis and viral clearance or persistence, individual cytokine levels, and TMEV-relevant gene expression. These results demonstrate how loci previously associated with TMEV outcomes provide incomplete information regarding TMEV-induced paralysis in the CC strains. Overall, these findings provide insight into the complex roles of immune response in the pathogenesis of virus-associated neurological diseases influenced by host genetic background.

10.
PLoS One ; 16(8): e0256370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34415947

RESUMO

Host genetic background is a significant driver of the variability in neurological responses to viral infection. Here, we leverage the genetically diverse Collaborative Cross (CC) mouse resource to better understand how chronic infection by Theiler's Murine Encephalomyelitis Virus (TMEV) elicits diverse clinical and morphologic changes in the central nervous system (CNS). We characterized the TMEV-induced clinical phenotype responses, and associated lesion distributions in the CNS, in six CC mouse strains over a 90 day infection period. We observed varying degrees of motor impairment in these strains, as measured by delayed righting reflex, paresis, paralysis, seizures, limb clasping, ruffling, and encephalitis phenotypes. All strains developed neuroparenchymal necrosis and mineralization in the brain, primarily localized to the hippocampal regions. Two of the six strains presented with axonal degeneration with myelin loss of the nerve roots in the lumbar spinal cord. Moreover, we statistically correlated lesion distribution with overall frequencies of clinical phenotypes and phenotype progression to better understand how and where TMEV targets the CNS, based on genetic background. Specifically, we assessed lesion distribution in relation to the clinical progression of these phenotypes from early to late TMEV disease, finding significant relationships between progression and lesion distribution. Finally, we identified quantitative trait loci associated with frequency of lesions in a particular brain region, revealing several loci of interest for future study: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1). Together, these results indicate that the genetic background influences the type and severity of clinical phenotypes, phenotypic resilience to TMEV, and the lesion distribution across strains.


Assuntos
Theilovirus , Animais , Doenças Desmielinizantes , Infecções por Enterovirus , Ativação Linfocitária , Camundongos , Infecção Persistente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA