Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(50): 25008-25012, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31772014

RESUMO

There is a huge interest in developing superrepellent surfaces for antifouling and heat-transfer applications. To characterize the wetting properties of such surfaces, the most common approach is to place a millimetric-sized droplet and measure its contact angles. The adhesion and friction forces can then be inferred indirectly using Furmidge's relation. While easy to implement, contact angle measurements are semiquantitative and cannot resolve wetting variations on a surface. Here, we attach a micrometric-sized droplet to an atomic force microscope cantilever to directly measure adhesion and friction forces with nanonewton force resolutions. We spatially map the micrometer-scale wetting properties of superhydrophobic surfaces and observe the time-resolved pinning-depinning dynamics as the droplet detaches from or moves across the surface.

2.
Acc Chem Res ; 52(7): 1844-1854, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31180637

RESUMO

Surface-enhanced Raman scattering (SERS) is a molecular-specific spectroscopic technique that provides up to 1010-fold enhancement of signature Raman fingerprints using nanometer-scale 0D to 2D platforms. Over the past decades, 3D SERS platforms with additional plasmonic materials in the z-axis have been fabricated at sub-micrometer to centimeter scale, achieving higher hotspot density in all x, y, and z spatial directions and higher tolerance to laser misalignment. Moreover, the flexibility to construct platforms in arbitrary sizes and 3D shapes creates attractive applications besides traditional SERS sensing. In this Account, we introduce our library of substrate-based and substrate-less 3D plasmonic platforms, with an emphasis on their non-sensing applications as microlaboratories and data storage labels. We aim to provide a scientific synopsis on these high-potential yet currently overlooked applications of SERS and ignite new scientific discoveries and technology development in 3D SERS platforms to tackle real-world issues. One highlight of our substrate-based SERS platforms is multilayered platforms built from micrometer-thick assemblies of plasmonic particles, which can achieve up to 1011 enhancement factor. As an alternative, constructing 3D hotspots on non-plasmonic supports significantly reduces waste of plasmonic materials while allowing high flexibility in structural design. We then introduce our emerging substrate-less plasmonic capsules including liquid marbles and colloidosomes, which we further incorporate the latter within an aerosol to form centimeter-scale SERS-active plasmonic cloud, the world's largest 3D SERS platform to date. We then discuss the various emerging applications arising only from these 3D platforms, in the fields of sensing, microreactions, and data storage. An important novel sensing application is the stand-off detection of airborne analytes that are several meters away, made feasible with aerosolized plasmonic clouds. We also describe plasmonic capsules as excellent miniature lab-in-droplets that can simultaneously provide in situ monitoring at the molecular level during reaction, owing to their ultrasensitive 3D plasmonic shells. We highlight the emergence of 3D SERS-based data storage platforms with 10-100-fold higher storage density than 2D platforms, featuring a new approach in the development of level 3 security (L3S) anti-counterfeiting labels. Ultimately, we recognize that 3D SERS research can only be developed further when its sensing capabilities are concurrently strengthened. With this vision, we foresee the creation of highly applicable 3D SERS platforms that excel in both sensing and non-sensing areas, providing modern solutions in the ongoing Fourth Industrial Revolution.

3.
Chem Soc Rev ; 48(3): 731-756, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30475351

RESUMO

Surface-enhanced Raman scattering (SERS) is a molecule-specific spectroscopic technique with diverse applications in (bio)chemistry, clinical diagnosis and toxin sensing. While hotspot engineering has expedited SERS development, it is still challenging to detect molecules with no specific affinity to plasmonic surfaces. With the aim of improving detection performances, we venture beyond hotspot engineering in this tutorial review and focus on emerging material design strategies to capture and confine analytes near SERS-active surfaces as well as various promising hybrid SERS platforms. We outline five major approaches to enhance SERS performance: (1) enlarging Raman scattering cross-sections of non-resonant molecules via chemical coupling reactions; (2) targeted chemical capturing of analytes through surface-grafted agents to localize them on plasmonic surfaces; (3) physically confining liquid analytes on non-wetting SERS-active surfaces and (4) confining gaseous analytes using porous materials over SERS hotspots; (5) synergizing conventional metal-based SERS platforms with functional materials such as graphene, semiconducting materials, and piezoelectric polymers. These approaches can be integrated with engineered hotspots as a multifaceted strategy to further boost SERS sensitivities that are unachievable using hotspot engineering alone. Finally, we highlight current challenges in this research area and suggest new research directions towards efficient SERS designs critical for real-world applications.

4.
Angew Chem Int Ed Engl ; 59(47): 21183-21189, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32767617

RESUMO

In nanoparticle self-assembly, the current lack of strategy to modulate orientational order creates challenges in isolating large-area plastic crystals. Here, we achieve two orientationally distinct supercrystals using one nanoparticle shape, including plastic crystals and uniform metacrystals. Our approach integrates multi-faceted Archimedean polyhedra with molecular-level surface polymeric interactions to tune nanoparticle orientational order during self-assembly. Experiments and simulations show that coiled surface polymer chains limit interparticle interactions, creating various geometrical configurations among Archimedean polyhedra to form plastic crystals. In contrast, brush-like polymer chains enable molecular interdigitation between neighboring particles, favoring consistent particle configurations and result in uniform metacrystals. Our strategy enhances supercrystal diversity for polyhedra comprising multiple nondegenerate facets.

5.
Angew Chem Int Ed Engl ; 59(39): 16997-17003, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32463536

RESUMO

The electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance owing to preferential catalyst-H formation and the consequential hydrogen evolution reaction (HER). Now, the Pt/Au electrocatalyst d-band structure is electronically modified using zeolitic imidazole framework (ZIF) to achieve a Faradaic efficiency (FE) of >44 % with high ammonia yield rate of >161 µg mgcat -1 h-1 under ambient conditions. The strategy lowers electrocatalyst d-band position to weaken H adsorption and concurrently creates electron-deficient sites to kinetically drive NRR by promoting catalyst-N2 interaction. The ZIF coating on the electrocatalyst doubles as a hydrophobic layer to suppress HER, further improving FE by >44-fold compared to without ZIF (ca. 1 %). The Pt/Au-NZIF interaction is key to enable strong N2 adsorption over H atom.

6.
Angew Chem Int Ed Engl ; 57(52): 17058-17062, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30382604

RESUMO

Gas-liquid reactions form the basis of our everyday lives, yet they still suffer poor reaction efficiency and are difficult to monitor in situ, especially at ambient conditions. Now, an inert gas-liquid reaction between aniline and CO2 is driven at 1 atm and 298 K by selectively concentrating these immiscible reactants at the interface between metal-organic framework and solid nanoparticles (solid@MOF). Real-time reaction SERS monitoring and simulations affirm the formation of phenylcarbamic acid, which was previously undetectable because they are unstable for post-reaction treatments. The solid@MOF ensemble gives rise to a more than 28-fold improvement to reaction efficiency as compared to ZIF-only and solid-only platforms, emphasizing that the interfacial nanocavities in solid@MOF are the key to enhance the gas-liquid reaction. Our strategy can be integrated with other functional materials, thus opening up new opportunities for ambient-operated gas-liquid applications.

7.
Biomacromolecules ; 14(6): 2083-94, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23692314

RESUMO

Redox-responsive hyperbranched poly(amido amine)s (PAAs) with tertiary amino cores and amine, poly(ethylene glycol) (PEG) and hydroxyl terminal groups were prepared for DNA delivery respectively. The DNA condensation capability of PAAs was investigated using gel electrophoresis, and the results showed that PAA terminated with 1-(2-aminoethyl)piperazine (AEPZ) (BAA) is the most efficient in binding plasmid DNA (pDNA). The diameter and zeta-potential of polyplexes from PAAs were characterized using dynamic light scattering (DLS), and the morphology of the polyplexes was obtained using atomic force microscopy (AFM). All the PAAs were able to condense pDNA into nanoparticles with diameters between 50 and 200 nm with a positive surface charge when the weight ratio of polymer/DNA was higher than 20. Glutathione (GSH)-induced DNA release from polyplexes and the buffering capability of PAAs were investigated as well. Cytotoxicity of PAAs and in vitro gene transfection of polyplexes were evaluated in HEK293, COS-7, MCF-7 and Hep G2 cell lines, respectively. The results reflect that PAAs show remarkably low or even no cytotoxicity, and that PAA with amino terminal groups mediates the most efficient gene transfection with the transfection efficiency comparable to that of 25 kDa polyethylenimine. Further the effects of the presence of buthionine sulfoximine (BSO) on the transfection efficiency and cytotoxicity of BAA polyplexes were investigated.


Assuntos
Aminas/química , Técnicas de Transferência de Genes , Poliaminas/administração & dosagem , Animais , Linhagem Celular , DNA/administração & dosagem , Humanos , Microscopia de Força Atômica , Oxirredução , Plasmídeos , Poliaminas/química
8.
Macromol Rapid Commun ; 34(19): 1563-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23996916

RESUMO

Rocket-like vesicles formed are composed of poly(acrylic aicd) (PMAA )/poly(ethylene glycol) (PEG) complex coated hollow silica spheres, and the structure and composition of the vesicles are characterized using TGA, (1)H NMR, FTIR, and TEM. Although only one-third of EG units of PEG brushes grafted to hollow silica spheres form the complex with PMAA via hydrogen bonding, the first "booster" layer composed of PMAA/PEG complex can provide secure encapsulation of model compound calcein blue under an acidic condition. The second "booster" layer composed of PEG brushes can be formed by changing acidic pH to 7.4 through the disassociation of the PMAA/PEG complex. A higher molecular weight PMAA exhibits a faster disassembly due to the formation of a looser PMAA/PEG complex on the surfaces of hollow silica spheres.


Assuntos
Portadores de Fármacos/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Dióxido de Silício/química , Resinas Acrílicas/química , Concentração de Íons de Hidrogênio , Propriedades de Superfície
9.
Adv Sci (Weinh) ; 9(36): e2204624, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36285805

RESUMO

Heat is abundantly available from various sources including solar irradiation, geothermal energy, industrial processes, automobile exhausts, and from the human body and other living beings. However, these heat sources are often overlooked despite their abundance, and their potential applications remain underdeveloped. In recent years, important progress has been made in the development of high-performance thermoelectric materials, which have been extensively studied at medium and high temperatures, but less so at near room temperature. Silver-based chalcogenides have gained much attention as near room temperature thermoelectric materials, and they are anticipated to catalyze tremendous growth in energy harvesting for advancing internet of things appliances, self-powered wearable medical systems, and self-powered wearable intelligent devices. This review encompasses the recent advancements of thermoelectric silver-based chalcogenides including binary and multinary compounds, as well as their hybrids and composites. Emphasis is placed on strategic approaches which improve the value of the figure of merit for better thermoelectric performance at near room temperature via engineering material size, shape, composition, bandgap, etc. This review also describes the potential of thermoelectric materials for applications including self-powering wearable devices created by different approaches. Lastly, the underlying challenges and perspectives on the future development of thermoelectric materials are discussed.


Assuntos
Prata , Dispositivos Eletrônicos Vestíveis , Humanos , Catálise , Engenharia , Temperatura Alta
10.
Chemistry ; 17(8): 2504-9, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21319241

RESUMO

Poly(methacrylic acid)-grafted hollow silica vesicles (PMAA-g-hollow silica vesicles) were obtained through a grafting-from approach. PMAA brushes were formed by performing atom-transfer radical polymerisation of sodium methacrylate with an initiator attached to the hollow silica spheres. PMAA-g-hollow silica vesicles were characterised by using TEM, thermogravimetric analysis (TGA) and FTIR spectroscopy. pH-dependent ξ potential and (1)H NMR spectra of PMAA-g-hollow silica vesicles were measured, and the results indicated that MAA brushes in PMAA-g-hollow silica vesicles had a lower ionisation degree and low solubility in acidic aqueous solution, for example, pH 3.4, but a higher ionisation degree and high solubility when the pH was higher than 7. Also it was demonstrated that calcein blue and fluorescein isothiocyanate (FITC) labelled dextran (M(n):10 kDa) could be encapsulated in the interiors of the PMAA-g-hollow silica vesicles with a negligible amount in PMAA brushes at pH 2, and pH-triggered release of calcein blue and FITC-labelled dextran from PMAA-g-hollow silica vesicles was observed at pH 7.4.


Assuntos
Ácidos Polimetacrílicos/química , Dióxido de Silício/química , Dextranos/química , Fluoresceína-5-Isotiocianato/química , Concentração de Íons de Hidrogênio , Solubilidade , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
11.
ACS Appl Mater Interfaces ; 13(49): 59263-59274, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34846837

RESUMO

Catheter-associated urinary tract infections (CAUTIs) are common and pose significant costs to healthcare systems. To date, this problem is largely unsolved as commercially available antimicrobial catheters are still lacking in functionality and performance. A prior study by Lim et al. ( Biotechnol. Bioeng. 2018, 115 (8), 2000-2012) reported the development of a novel anhydrous polycaprolactone (PCL) polymer formulation with controlled-release functionality for antimicrobial peptides. In this follow-up study, we developed an improved antimicrobial peptide (AMP)-impregnated poly(ethylene glycol) (PEG)-polycaprolactone (PCL) anhydrous polymer coating for enhanced sustained controlled-release functionality to provide catheters with effective antimicrobial properties. Varying the ratio of PEG and PEG-PCL copolymers resulted in polymers with different morphologies, consequently affecting the AMP release profiles. The optimal coating, formulated with 10% (w/w) PEG-PCL in PCL, achieved a controlled AMP release rate of 31.65 ± 6.85 µg/mL daily for up to 19 days, with a moderate initial burst release. Such profile is desired for antimicrobial coating as the initial burst release acts as a sterilizer to kill the bacteria present in the urinary tract upon insertion, and the subsequent linear release functions as a prophylaxis to deter opportunistic microbial infections. As a proof-of-concept application, our optimized coating was then applied to a commercial silicone catheter for further antibacterial tests. Preliminary results revealed that our coated catheters outperformed commercial silver-based antimicrobial catheters in terms of antimicrobial performance and sustainability, lasting for 4 days. Application of the controlled-release coating also aids in retarding biofilm formation, showing a lower extent of biofilm formation at the end of seven inoculation cycles.


Assuntos
Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Cateteres Urinários/microbiologia , Infecções Urinárias/prevenção & controle , Antibacterianos/química , Peptídeos Antimicrobianos/química , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula
12.
J Am Chem Soc ; 132(43): 15140-3, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20929223

RESUMO

A 'living' controlled hydrogel formation method was first reported to create loose and compact in situ biodegradable hydrogels. The method executed under mild reaction conditions can conveniently tailor the hydrogel properties, and it has the potential to develop into a powerful tool for the design, synthesis, and self-assembly of novel tailor-made biomaterials and drug delivery systems.


Assuntos
Dissulfetos/química , Hidrogéis/química , Compostos de Sulfidrila/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/metabolismo , Hidrogéis/metabolismo , Polímeros/química
13.
Nanotechnology ; 21(6): 065101, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20057024

RESUMO

UNLABELLED: Physically loading of paclitaxel (PTX) onto carbon nanotubes (CNTs) is achieved through immersion of poly(ethylene glycol) (PEG)-graft-single walled CNTs (PEG-g-SWNTs) or PEG-graft-multi-walled CNTs (PEG-g-MWNTs) in a saturated solution of PTX in methanol. After loading once the loading capacity (LD%) is 26% (w/w) and 36% (w/w) for PEG-g-SWNTs or PEG-g-MWNTs, respectively. With these PTX contents, PTX loaded PEG-g-SWNTs and PTX loaded PEG-g-MWNTs still have good dispersity in aqueous solution and individual CNTs can be observed in TEM images. PTX can be released from PEG-g-CNTs several times faster than from free PTX but still in a sustained profile with less than 40% of PTX being released in 40 days at pH 7 or 5. In vitro cytotoxicity of samples is evaluated in HeLa cells and MCF-7 cells. PEG-g-SWNTs and PEG-g-MWNTs show low cytotoxicity in both cells with insignificant effects on the cell proliferation rates. However, both PTX loaded PEG-g-SWNTs and PTX loaded PEG-g-MWNTs show high efficacy to kill HeLa cells and MCF-7 cells, as reflected by IC(50) lower than free PTX. Therefore, PTX loaded PEG-g-CNTs are promising for cancer therapeutics. KEYWORDS: carbon nanotubes, poly(ethylene glycol), drug delivery, cancer therapy, nanomedicine.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Portadores de Fármacos/química , Nanotubos de Carbono/química , Paclitaxel/administração & dosagem , Polietilenoglicóis/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Paclitaxel/farmacologia
14.
ACS Appl Mater Interfaces ; 12(37): 42386-42392, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32799518

RESUMO

The functional properties of a surface, such as its anti-fogging or anti-fouling performance, are influenced by its wettability. To quantify surface wettability, the most common approach is to measure the contact angles of a liquid droplet on the surface. While well established and relatively easy to perform, contact angle measurements were developed to describe macroscopic wetting properties and are difficult to perform for submillimetric droplets. Moreover, they cannot spatially resolve surface heterogeneities that can contribute to surface fouling. To address these shortcomings, we report on using an atomic force microscopy technique to quantitatively measure the interaction forces between a microdroplet and a surface with piconewton force resolution. We show how our technique can be used to spatially map topographical and chemical heterogeneities with micron resolution.

15.
ACS Appl Mater Interfaces ; 12(9): 10061-10079, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32040295

RESUMO

Two-photon lithography (TPL) is an emerging approach to fabricate complex multifunctional micro/nanostructures. This is because TPL can easily develop various 2D and 3D structures on a variety of surfaces, and there has been a rapidly expanding pool of processable photoresists to create different materials. However, challenges in developing two-photon processable photoresists currently impede progress in TPL. In this review, we critically discuss the importance of photoresist formulation in TPL. We begin by evaluating the commercial photoresists to design micro/nanostructures for promising applications in anti-counterfeiting, superomniphobicity, and micromachines with movable parts. Next, we discuss emerging hydrogel/organogel photoresists, focusing on customizing photoresist formulations to fabricate reconfigurable structures that can respond to changes in local pH, solvent, and temperature. We also review the development of metal salt-based photoresists for direct metal writing, whereby various formulations have been developed to enable applications in online sensing, catalysis, and electronics. Finally, we provide a critical outlook and highlight various outstanding challenges in formulating processable photoresists for TPL.

16.
ACS Nano ; 14(2): 2542-2552, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32049493

RESUMO

Successful translation of laboratory-based surface-enhanced Raman scattering (SERS) platforms to clinical applications requires multiplex and ultratrace detection of small biomarker molecules from a complex biofluid. However, these biomarker molecules generally exhibit low Raman scattering cross sections and do not possess specific affinity to plasmonic nanoparticle surfaces, significantly increasing the challenge of detecting them at low concentrations. Herein, we demonstrate a "confine-and-capture" approach for multiplex detection of two families of urine metabolites correlated with miscarriage risks, 5ß-pregnane-3α,20α-diol-3α-glucuronide and tetrahydrocortisone. To enhance SERS signals by 1012-fold, we use specific nanoscale surface chemistry for targeted metabolite capture from a complex urine matrix prior to confining them on a superhydrophobic SERS platform. We then apply chemometrics, including principal component analysis and partial least-squares regression, to convert molecular fingerprint information into quantifiable readouts. The whole screening procedure requires only 30 min, including urine pretreatment, sample drying on the SERS platform, SERS measurements, and chemometric analyses. These readouts correlate well with the pregnancy outcomes in a case-control study of 40 patients presenting threatened miscarriage symptoms.


Assuntos
Pregnanodiol/urina , Tetra-Hidrocortisona/urina , Calibragem , Teoria da Densidade Funcional , Feminino , Humanos , Estrutura Molecular , Tamanho da Partícula , Gravidez , Pregnanodiol/análogos & derivados , Pregnanodiol/metabolismo , Análise Espectral Raman , Propriedades de Superfície , Tetra-Hidrocortisona/metabolismo , Fatores de Tempo
17.
J Phys Chem B ; 112(42): 13218-24, 2008 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-18817432

RESUMO

Water-dispersible polyelectrolyte multilayers (PEM) were obtained by layer-by-layer assembly of poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrene sulfonate) (PSS) on water-soluble poly(ethylene glycol)- graft-multiwalled carbon nanotubes (PEG- g-MWNTs), and their structures were investigated using solution (1)H NMR. It was clearly shown that some segments of the adsorbed topmost layers formed in layer-by-layer assembly processes are still highly mobile in aqueous solution, and these segments are totally compensated by subsequent coatings of the oppositely charged layers to form ionically cross-linked polyelectrolyte complexes (PEC) layers; it was demonstrated that the ionization behaviors of the highly mobile segments of the topmost PAH layers are similar to those in solution rather than those in the bulk multilayers at different pH. Furthermore, the similarity among the PEM on substrates and the PEC colloids prepared under similar conditions in solution was supported by solution (1)H NMR results, and the unequal stiochiometry of the cationic group from PAH and the anionic group from PSS in the cores of the PEC colloids in solution was identified from solution (1)H NMR results using PEG as external references. On the basis of these, it is suggested that the PEC layers in PEM formed from coating of the adsorbed topmost PAH layers with PSS solution contain excess PSS, and reversely those formed from coating of the adsorbed topmost PSS layers with PAH solution contain excess PAH. Hence a new description of PEM is put forward that the polyelectrolyte multilayers are composed of alternate layers excess either in PSS or in PAH.

18.
Nat Commun ; 9(1): 2769, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018282

RESUMO

Organizing nanoparticles into supercrystals comprising multiple structures remains challenging. Here, we achieve one assembly with dual structures for Ag polyhedral building blocks, comprising truncated cubes, cuboctahedra, truncated octahedra, and octahedra. We create two micro-environments in a solvent evaporation-driven assembly system: one at the drying front and one at the air/water interface. Dynamic solvent flow concentrates the polyhedra at the drying front, generating hard particle behaviors and leading to morphology-dependent densest-packed bulk supercrystals. In addition, monolayers of nanoparticles adsorb at the air/liquid interface to minimize the air/liquid interfacial energy. Subsequent solvent evaporation gives rise to various structurally diverse dual-structure supercrystals. The topmost monolayers feature distinct open crystal structures with significantly lower packing densities than their densest-packed supercrystals. We further highlight a 3.3-fold synergistic enhancement of surface-enhanced Raman scattering efficiency arising from these dual-structure supercrystals as compared to a uniform one.

19.
Nanoscale ; 10(2): 575-581, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242860

RESUMO

The application of aluminum (Al)-based nanostructures for visible-range plasmonics, especially for surface-enhanced Raman scattering (SERS), currently suffers from inconsistent local electromagnetic field distributions and/or inhomogeneous distribution of probe molecules. Herein, we lithographically fabricate structurally uniform Al nanostructures which enable homogeneous adsorption of various probe molecules. Individual Al nanostructures exhibit strong local electromagnetic field enhancements, in turn leading to intense SERS activity. The average SERS enhancement factor (EF) for individual nanostructures exceeds 104 for non-resonant probe molecules in the visible spectrum. These Al nanostructures also retain more than 70% of their original SERS intensities after one-month storage, displaying superb stability under ambient conditions. We further achieve tunable polarization-dependent SERS responses using anisotropic Al nanostructures, facilitating the design of sophisticated SERS-based security labels. Our micron-sized security label comprises two-tier security features, including a machine-readable hybrid quick-response (QR) code overlaid with a set of ciphertexts. Our work demonstrates the versatility of Al-based structures in low-cost modern chemical nano-analytics and forgery protection.

20.
Nanoscale ; 10(34): 16005-16012, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30113061

RESUMO

Nanoporous gold (NPG) promises efficient light-to-heat transformation, yet suffers limited photothermal conversion efficiency owing to the difficulty in controlling its morphology for the direct modulation of thermo-plasmonic properties. Herein, we showcase a series of shape-controlled NPG nanoparticles with distinct bowl- (NPG-B), tube- (NPG-T) and plate-like (NPG-P) structures for quantitative temperature regulation up to 140 °C in <1 s using laser irradiation. Notably, NPG-B exhibits the highest photothermal efficiency of 68%, which is >12 and 39 percentage points better than those of other NPG shapes (NPG-T, 56%; NPG-P, 49%) and Au nanoparticles (29%), respectively. We attribute NPG-B's superior photothermal performance to its >13% enhanced light absorption cross-section compared to other Au nanostructures. We further realize an ultrasensitive heat-mediated light-to-mechanical "kill switch" by integrating NPG-B with a heat-responsive shape-memory polymer (SMP/NPG-B). This SMP/NPG-B hybrid is analogous to a photo-triggered mechanical arm, and can be activated swiftly in <4 s simply by remote laser irradiation. Achieving remotely-activated "kill switch" is critical in case of emergencies such as gas leaks, where physical access is usually prohibited or dangerous. Our work offers valuable insights into the structural design of NPG for optimal light-to-heat conversion, and creates opportunities to formulate next-generation smart materials for on-demand and multi-directional responsiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA