Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Blood ; 138(6): 439-451, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-33876187

RESUMO

We surveyed 16 published and unpublished data sets to determine whether a consistent pattern of transcriptional deregulation in aging murine hematopoietic stem cells (HSC) exists. Despite substantial heterogeneity between individual studies, we uncovered a core and robust HSC aging signature. We detected increased transcriptional activation in aged HSCs, further confirmed by chromatin accessibility analysis. Unexpectedly, using 2 independent computational approaches, we established that deregulated aging genes consist largely of membrane-associated transcripts, including many cell surface molecules previously not associated with HSC biology. We show that Selp (P-selectin), the most consistent deregulated gene, is not merely a marker for aged HSCs but is associated with HSC functional decline. Additionally, single-cell transcriptomics analysis revealed increased heterogeneity of the aged HSC pool. We identify the presence of transcriptionally "young-like" HSCs in aged bone marrow. We share our results as an online resource and demonstrate its utility by confirming that exposure to sympathomimetics or deletion of Dnmt3a/b molecularly resembles HSC rejuvenation or aging, respectively.


Assuntos
Senescência Celular , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Transcriptoma , Animais , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Transgênicos
2.
Blood ; 131(5): 479-487, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141947

RESUMO

Hematopoietic stem cells (HSCs) ensure a balanced production of all blood cells throughout life. As they age, HSCs gradually lose their self-renewal and regenerative potential, whereas the occurrence of cellular derailment strongly increases. Here we review our current understanding of the molecular mechanisms that contribute to HSC aging. We argue that most of the causes that underlie HSC aging result from cell-intrinsic pathways, and reflect on which aspects of the aging process may be reversible. Because many hematological pathologies are strongly age-associated, strategies to intervene in aspects of the stem cell aging process may have significant clinical relevance.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Envelhecimento/sangue , Animais , Autofagia/fisiologia , Epigênese Genética/fisiologia , Hematopoese/fisiologia , Humanos , Mitocôndrias/fisiologia
3.
Blood ; 130(13): 1523-1534, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28827409

RESUMO

Endogenous DNA damage is causally associated with the functional decline and transformation of stem cells that characterize aging. DNA lesions that have escaped DNA repair can induce replication stress and genomic breaks that induce senescence and apoptosis. It is not clear how stem and proliferating cells cope with accumulating endogenous DNA lesions and how these ultimately affect the physiology of cells and tissues. Here we have addressed these questions by investigating the hematopoietic system of mice deficient for Rev1, a core factor in DNA translesion synthesis (TLS), the postreplicative bypass of damaged nucleotides. Rev1 hematopoietic stem and progenitor cells displayed compromised proliferation, and replication stress that could be rescued with an antioxidant. The additional disruption of Xpc, essential for global-genome nucleotide excision repair (ggNER) of helix-distorting nucleotide lesions, resulted in the perinatal loss of hematopoietic stem cells, progressive loss of bone marrow, and fatal aplastic anemia between 3 and 4 months of age. This was associated with replication stress, genomic breaks, DNA damage signaling, senescence, and apoptosis in bone marrow. Surprisingly, the collapse of the Rev1Xpc bone marrow was associated with progressive mitochondrial dysfunction and consequent exacerbation of oxidative stress. These data reveal that, to protect its genomic and functional integrity, the hematopoietic system critically depends on the combined activities of repair and replication of helix-distorting oxidative nucleotide lesions by ggNER and Rev1-dependent TLS, respectively. The error-prone nature of TLS may provide mechanistic understanding of the accumulation of mutations in the hematopoietic system upon aging.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Sistema Hematopoético/fisiologia , Estresse Oxidativo , Animais , Apoptose , Medula Óssea/patologia , Proliferação de Células , Senescência Celular/genética , DNA Polimerase Dirigida por DNA , Genoma , Células-Tronco Hematopoéticas/patologia , Camundongos , Nucleotidiltransferases
4.
Exp Cell Res ; 329(2): 234-8, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25192911

RESUMO

miRNAs have been implicated in all stages of hematopoiesis including maintenance of self-renewal of hematopoietic stem cells (HSCs) and differentiation into mature blood cells. Regulation by miRNAs is markedly intertwined with transcription factors. In this review, we highlight miRNAs shown to be important for HSC maintenance and lineage differentiation with focus on their interaction with transcription factors. We also pay attention to the diverse modes of miRNA regulation.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , MicroRNAs/genética , Animais , Humanos
5.
Nat Commun ; 13(1): 4057, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882841

RESUMO

While many genetic diseases have effective treatments, they frequently progress rapidly to severe morbidity or mortality if those treatments are not implemented immediately. Since front-line physicians frequently lack familiarity with these diseases, timely molecular diagnosis may not improve outcomes. Herein we describe Genome-to-Treatment, an automated, virtual system for genetic disease diagnosis and acute management guidance. Diagnosis is achieved in 13.5 h by expedited whole genome sequencing, with superior analytic performance for structural and copy number variants. An expert panel adjudicated the indications, contraindications, efficacy, and evidence-of-efficacy of 9911 drug, device, dietary, and surgical interventions for 563 severe, childhood, genetic diseases. The 421 (75%) diseases and 1527 (15%) effective interventions retained are integrated with 13 genetic disease information resources and appended to diagnostic reports ( https://gtrx.radygenomiclab.com ). This system provided correct diagnoses in four retrospectively and two prospectively tested infants. The Genome-to-Treatment system facilitates optimal outcomes in children with rapidly progressive genetic diseases.


Assuntos
Variações do Número de Cópias de DNA , Criança , Humanos , Lactente , Estudos Retrospectivos , Sequenciamento Completo do Genoma
6.
Nat Commun ; 12(1): 608, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504783

RESUMO

Haematopoietic stem cells (HSCs) are characterized by their self-renewal potential associated to dormancy. Here we identify the cell surface receptor neogenin-1 as specifically expressed in dormant HSCs. Loss of neogenin-1 initially leads to increased HSC expansion but subsequently to loss of self-renewal and premature exhaustion in vivo. Its ligand netrin-1 induces Egr1 expression and maintains quiescence and function of cultured HSCs in a Neo1 dependent manner. Produced by arteriolar endothelial and periarteriolar stromal cells, conditional netrin-1 deletion in the bone marrow niche reduces HSC numbers, quiescence and self-renewal, while overexpression increases quiescence in vivo. Ageing associated bone marrow remodelling leads to the decline of netrin-1 expression in niches and a compensatory but reversible upregulation of neogenin-1 on HSCs. Our study suggests that niche produced netrin-1 preserves HSC quiescence and self-renewal via neogenin-1 function. Decline of netrin-1 production during ageing leads to the gradual decrease of Neo1 mediated HSC self-renewal.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Proteínas de Membrana/metabolismo , Netrina-1/metabolismo , Nicho de Células-Tronco , Animais , Arteríolas/metabolismo , Diferenciação Celular , Proliferação de Células , Senescência Celular , Deleção de Genes , Transplante de Células-Tronco Hematopoéticas , Camundongos Mutantes , Camundongos Transgênicos , Transdução de Sinais
7.
Cell Rep ; 26(7): 1906-1918.e8, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759399

RESUMO

In this study, we demonstrate that, among all five CBX Polycomb proteins, only CBX7 possesses the ability to control self-renewal of human hematopoietic stem and progenitor cells (HSPCs). Xenotransplantation of CBX7-overexpressing HSPCs resulted in increased multi-lineage long-term engraftment and myelopoiesis. Gene expression and chromatin analyses revealed perturbations in genes involved in differentiation, DNA and chromatin maintenance, and cell cycle control. CBX7 is upregulated in acute myeloid leukemia (AML), and its genetic or pharmacological repression in AML cells inhibited proliferation and induced differentiation. Mass spectrometry analysis revealed several non-histone protein interactions between CBX7 and the H3K9 methyltransferases SETDB1, EHMT1, and EHMT2. These CBX7-binding proteins possess a trimethylated lysine peptide motif highly similar to the canonical CBX7 target H3K27me3. Depletion of SETDB1 in AML cells phenocopied repression of CBX7. We identify CBX7 as an important regulator of self-renewal and uncover non-canonical crosstalk between distinct pathways, revealing therapeutic opportunities for leukemia.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Células-Tronco/metabolismo , Animais , Feminino , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Células HEK293 , Células HL-60 , Células-Tronco Hematopoéticas/citologia , Xenoenxertos , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células K562 , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Complexo Repressor Polycomb 1/biossíntese , Complexo Repressor Polycomb 1/genética , Células-Tronco/citologia , Transcrição Gênica
8.
Exp Hematol ; 53: 26-30, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28625745

RESUMO

Hematopoietic stem cells (HSCs) undergo a profound functional decline during normal aging. Because caloric or dietary restriction has been shown to delay multiple aspects of the aging process in many species, we explored the consequences of lifelong caloric restriction, or conversely, lifelong excess caloric intake, on HSC numbers and function. Although caloric restriction prevented age-dependent increases in bone marrow cellularity, caloric restriction was not able to prevent functional decline of aged, long-term HSC functioning. A lifelong high-fat diet also did not affect HSC function. We conclude that lifelong caloric interventions fail to prevent or induce loss of age-associated HSC functioning.


Assuntos
Dieta , Células-Tronco Hematopoéticas/fisiologia , Envelhecimento , Animais , Restrição Calórica , Dieta Hiperlipídica , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA