Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Langmuir ; 35(34): 11114-11122, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31361147

RESUMO

Peptides are very common recognition entities that are usually attached to surfaces using multistep processes. These processes require modification of the native peptides and of the substrates. Using functional groups in native peptides for their assembly on surfaces without affecting their biological activity can facilitate the preparation of biosensors. Herein, we present a simple single-step formation of native oxytocin monolayer on gold surface. These surfaces were characterized by atomic force spectroscopy, spectroscopic ellipsometry, and X-ray photoelectron spectroscopy. We took advantage of the native disulfide bridge of the oxytocin for anchoring the peptide to the Au surface, while preserving the metal-ion binding properties. Self-assembled oxytocin monolayer was used by electrochemical impedance spectroscopy for metal-ion sensing leading to subnanomolar sensitivities for zinc or copper ions.

2.
Nature ; 493(7433): 509-13, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23344361

RESUMO

The use of molecular spin state as a quantum of information for storage, sensing and computing has generated considerable interest in the context of next-generation data storage and communication devices, opening avenues for developing multifunctional molecular spintronics. Such ideas have been researched extensively, using single-molecule magnets and molecules with a metal ion or nitrogen vacancy as localized spin-carrying centres for storage and for realizing logic operations. However, the electronic coupling between the spin centres of these molecules is rather weak, which makes construction of quantum memory registers a challenging task. In this regard, delocalized carbon-based radical species with unpaired spin, such as phenalenyl, have shown promise. These phenalenyl moieties, which can be regarded as graphene fragments, are formed by the fusion of three benzene rings and belong to the class of open-shell systems. The spin structure of these molecules responds to external stimuli (such as light, and electric and magnetic fields), which provides novel schemes for performing spin memory and logic operations. Here we construct a molecular device using such molecules as templates to engineer interfacial spin transfer resulting from hybridization and magnetic exchange interaction with the surface of a ferromagnet; the device shows an unexpected interfacial magnetoresistance of more than 20 per cent near room temperature. Moreover, we successfully demonstrate the formation of a nanoscale magnetic molecule with a well-defined magnetic hysteresis on ferromagnetic surfaces. Owing to strong magnetic coupling with the ferromagnet, such independent switching of an adsorbed magnetic molecule has been unsuccessful with single-molecule magnets. Our findings suggest the use of chemically amenable phenalenyl-based molecules as a viable and scalable platform for building molecular-scale quantum spin memory and processors for technological development.

3.
Nano Lett ; 18(3): 1739-1744, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29393651

RESUMO

Point defects significantly influence the optical and electrical properties of solid-state materials due to their interactions with charge carriers, which reduce the band-to-band optical transition energy. There has been a demand for developing direct optical imaging methods that would allow in situ characterization of individual defects with nanometer resolution. Here, we demonstrate the localization and quantitative counting of individual optically active defects in monolayer hexagonal boron nitride using single molecule localization microscopy. By exploiting the blinking behavior of defect emitters to temporally isolate multiple emitters within one diffraction limited region, we could resolve two defect emitters with a point-to-point distance down to ten nanometers. The results and conclusion presented in this work add unprecedented dimensions toward future applications of defects in quantum information processing and biological imaging.

4.
Nano Lett ; 17(9): 5626-5633, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28795576

RESUMO

The control of recently observed spintronic effects in topological-insulator/ferromagnetic-metal (TI/FM) heterostructures is thwarted by the lack of understanding of band structure and spin textures around their interfaces. Here we combine density functional theory with Green's function techniques to obtain the spectral function at any plane passing through atoms of Bi2Se3 and Co or Cu layers comprising the interface. Instead of naively assumed Dirac cone gapped by the proximity exchange field spectral function, we find that the Rashba ferromagnetic model describes the spectral function on the surface of Bi2Se3 in contact with Co near the Fermi level EF0, where circular and snowflake-like constant energy contours coexist around which spin locks to momentum. The remnant of the Dirac cone is hybridized with evanescent wave functions from metallic layers and pushed, due to charge transfer from Co or Cu layers, a few tenths of an electron-volt below EF0 for both Bi2Se3/Co and Bi2Se3/Cu interfaces while hosting distorted helical spin texture wounding around a single circle. These features explain recent observation of sensitivity of spin-to-charge conversion signal at TI/Cu interface to tuning of EF0. Crucially for spin-orbit torque in TI/FM heterostructures, few monolayers of Co adjacent to Bi2Se3 host spectral functions very different from the bulk metal, as well as in-plane spin textures (despite Co magnetization being out-of-plane) due to proximity spin-orbit coupling in Co induced by Bi2Se3. We predict that out-of-plane tunneling anisotropic magnetoresistance in Cu/Bi2Se3/Co vertical heterostructure can serve as a sensitive probe of the type of spin texture residing at EF0.

5.
Phys Rev Lett ; 118(11): 116401, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28368636

RESUMO

We present direct experimental evidence of broken chirality in graphene by analyzing electron scattering processes at energies ranging from the linear (Dirac-like) to the strongly trigonally warped region. Furthermore, we are able to measure the energy of the van Hove singularity at the M point of the conduction band. Our data show a very good agreement with theoretical calculations for free-standing graphene. We identify a new intravalley scattering channel activated in case of a strongly trigonally warped constant energy contour, which is not suppressed by chirality. Finally, we compare our experimental findings with T-matrix simulations with and without the presence of a pseudomagnetic field and suggest that higher order electron hopping effects are a key factor in breaking the chirality near to the van Hove singularity.

6.
Nano Lett ; 13(11): 5013-9, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24131290

RESUMO

The ease by which graphene is affected through contact with other materials is one of its unique features and defines an integral part of its potential for applications. Here, it will be demonstrated that intercalation, the insertion of atomic layers in between the backside of graphene and the supporting substrate, is an efficient tool to change its interaction with the environment on the frontside. By partial intercalation of graphene on Ir(111) with Eu or Cs we induce strongly n-doped graphene patches through the contact with these intercalants. They coexist with nonintercalated, slightly p-doped graphene patches. We employ these backside doping patterns to directly visualize doping induced binding energy differences of ionic adsorbates to graphene through low-temperature scanning tunneling microscopy. Density functional theory confirms these binding energy differences and shows that they are related to the graphene doping level.

7.
Inorg Chem ; 52(24): 14299-308, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24283516

RESUMO

A novel heterometallic oxalate-based compound, {Ba2(H2O)5[TaO(C2O4)3]HC2O4}·H2O (1), was obtained by using an (oxalato)tantalate(V) aqueous solution as a source of the complex anion and characterized by X-ray single-crystal diffraction, IR spectroscopy, and thermal analysis. Compound 1 is a three-dimensional (3D) coordination polymer with the Ta atom connected to eight neighboring Ba atoms through the oxalate ligands and the oxo oxygen group. Thermal treatment of 1 up to 1200 °C leads to molecular precursor-to-material conversion that yields the mixed-metal γ-Ba4Ta2O9 phase. This high-temperature γ-Ba4Ta2O9 polymorph has the 6H-perovskite structure (space group P6(3)/m), in which the Ta2O9 face-sharing octahedral dimers are interconnected via corners to the regular BaO6 octahedra. To date, γ-Ba4Ta2O9 has never been obtained at room temperature, because of the reduction of symmetry (P6(3)/m → P2(1)/c) that usually occurs during the cooling. Spectroscopic, optical, photocatalytic, and electrical properties of the obtained γ-Ba4Ta2O9 phase were investigated. In addition to the experimental data, an absorption spectrum and band structure of the γ-Ba4Ta2O9 polymorph were calculated using density functional theory.

8.
Med Arch ; 66(3): 169-72, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22822616

RESUMO

INTRODUCTION: Basocellular skin carcinoma (BCC) is the most common cancer in the human population. BCC almost appeared at adult's people, but it can be found at children, too. THE AIM: The aim of this study was to determine which the position of BCC on the head skin is the most difficult for the treatment and what the reasons are for it. METHODS: With the prospective study, from June 2004 to June 2011, were compared the results of treatment of basocellular carcinomas (BCC) of the head skin. The examinees were divided into 3 groups. The first group, the group A (38 patients) was consisted of examinees treated of BCC on the nose. In the second group, the group B (42 patients) was classified of examinees treated of BCC on the face, temple, eyelids and forehead, while the third group, group C (35 patients) was classified of examinees treated of BCC on the scalp. The parameters for comparison the results of treatment were the method of treatment, number of the relapse, elapsed time from surgery to relapse and consequently defacement. RESULTS: There was found a statistical significant difference in terms of choice of methods of operative treatment for the significantly higher number of operations on the scalp operated with cutaneous transplants. It was confirmed that the localization of the tumors on the scalp, and then on the nose are with the highest incidence of the relapse, whereas the postoperative defacement is mostly on the scalp after skin graft placement. Key


Assuntos
Carcinoma Basocelular/cirurgia , Neoplasias Faciais/cirurgia , Neoplasias de Cabeça e Pescoço/cirurgia , Couro Cabeludo , Neoplasias Cutâneas/cirurgia , Adulto , Carcinoma Basocelular/patologia , Neoplasias Faciais/patologia , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Neoplasias Cutâneas/patologia
9.
Phys Rev Lett ; 107(3): 036101, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21838377

RESUMO

The nonlocal van der Waals density functional approach is applied to calculate the binding of graphene to Ir(111). The precise agreement of the calculated mean height h = 3.41 Å of the C atoms with their mean height h = (3.38±0.04) Å as measured by the x-ray standing wave technique provides a benchmark for the applicability of the nonlocal functional. We find bonding of graphene to Ir(111) to be due to the van der Waals interaction with an antibonding average contribution from chemical interaction. Despite its globally repulsive character, in certain areas of the large graphene moiré unit cell charge accumulation between Ir substrate and graphene C atoms is observed, signaling a weak covalent bond formation.

10.
Phys Rev Lett ; 105(6): 066601, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20867994

RESUMO

By means of ab initio calculations and spin-polarized scanning tunneling microscopy experiments the creation of a complex energy dependent magnetic structure with a tailored spin-polarized interface is demonstrated. We show this novel effect by adsorbing organic molecules containing π(p(z)) electrons onto a magnetic surface. The hybridization of the out-of-plane p(z) atomic-type orbitals with the d states of the metal leads to the inversion of the spin polarization at the organic site due to a p(z)-d Zener exchange-type mechanism. As a key result, we demonstrate the possibility to selectively and efficiently inject spin-up and spin-down electrons from a ferromagnetic-organic interface, an effect which can be exploited in future spintronic devices.

11.
Phys Rev Lett ; 105(4): 047204, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20867880

RESUMO

We investigate the spin- and energy-dependent tunneling through a single organic molecule (CoPc) adsorbed on a ferromagnetic Fe thin film, spatially resolved by low-temperature spin-polarized scanning tunneling microscopy. Interestingly, the metal ion as well as the organic ligand show a significant spin dependence of tunneling current flow. State-of-the-art ab initio calculations including also van der Waals interactions reveal a strong hybridization of molecular orbitals and substrate 3d states. The molecule is anionic due to a transfer of one electron, resulting in a nonmagnetic (S=0) state. Nevertheless, tunneling through the molecule exhibits a pronounced spin dependence due to spin-split molecule-surface hybrid states.

12.
ACS Nano ; 10(12): 11012-11026, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024332

RESUMO

Using the X-ray standing wave method, scanning tunneling microscopy, low energy electron diffraction, and density functional theory, we precisely determine the lateral and vertical structure of hexagonal boron nitride on Ir(111). The moiré superstructure leads to a periodic arrangement of strongly chemisorbed valleys in an otherwise rather flat, weakly physisorbed plane. The best commensurate approximation of the moiré unit cell is (12 × 12) boron nitride cells resting on (11 × 11) substrate cells, which is at variance with several earlier studies. We uncover the existence of two fundamentally different mechanisms of layer formation for hexagonal boron nitride, namely, nucleation and growth as opposed to network formation without nucleation. The different pathways are linked to different distributions of rotational domains, and the latter enables selection of a single orientation only.

13.
ACS Nano ; 9(4): 4611-20, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25843548

RESUMO

Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 µm.

14.
Nat Commun ; 6: 6662, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25798542

RESUMO

Chemical and physical transformations by milling are attracting enormous interest for their ability to access new materials and clean reactivity, and are central to a number of core industries, from mineral processing to pharmaceutical manufacturing. While continuous mechanical stress during milling is thought to create an environment supporting nonconventional reactivity and exotic intermediates, such speculations have remained without proof. Here we use in situ, real-time powder X-ray diffraction monitoring to discover and capture a metastable, novel-topology intermediate of a mechanochemical transformation. Monitoring the mechanochemical synthesis of an archetypal metal-organic framework ZIF-8 by in situ powder X-ray diffraction reveals unexpected amorphization, and on further milling recrystallization into a non-porous material via a metastable intermediate based on a previously unreported topology, herein named katsenite (kat). The discovery of this phase and topology provides direct evidence that milling transformations can involve short-lived, structurally unusual phases not yet accessed by conventional chemistry.

15.
J Phys Condens Matter ; 26(26): 263001, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24873931

RESUMO

In this review we summarize our experience gained from several recent ab initio studies aimed to investigate how the competition between short-ranged chemical and long-ranged dispersion interactions determines the bonding mechanism of a specific set of chemically functionalized π-conjugated organic molecules on non-magnetic and magnetic metal surfaces. A key point of this review is to provide a detailed analysis on the issue of how to tune the strength of the organic molecule-surface interaction, such that the nature of the molecular bonding exhibits the specific electronic features of the physisorption or chemisorption bonding mechanisms. In particular, we discuss in detail how the precise control of these bonding mechanisms can be used to design specific electronic and magnetic properties of hybrid organic-metallic interfaces. Furthermore, our first-principles simulations provide not only the basic insights needed to interpret surface-science experiments, but are also a key tool to design organic-substrate systems with tailored properties that can be integrated into future organic-based devices for molecular electronics and molecular spintronics applications.

16.
Adv Mater ; 25(14): 1967-72, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23382024

RESUMO

The zigzag edges of graphene on Ir(111) are studied by ab initio simulations and low-temperature scanning tunneling spectroscopy, providing information about their structural, electronic, and magnetic properties. No edge state is found to exist, which is explained in terms of the interplay between a strong geometrical relaxation at the edge and a hybridization of the d orbitals of Ir atoms with the graphene orbitals at the edge.


Assuntos
Grafite/química , Ferro/química , Microscopia de Tunelamento , Nanoestruturas/química , Teoria Quântica
17.
J Phys Condens Matter ; 24(42): 424214, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23032913

RESUMO

We have performed a systematic semi-empirical and ab initio van der Waals study to investigate the bonding mechanism of benzene (C(6)H(6)), triazine (C(3)N(3)H(3)) and borazine (B(3)N(3)H(6)) adsorbed on graphene and a single boron nitride (BN) sheet. The two semi-empirical approaches used to include the van der Waals (vdW) interactions in our density functional theory (DFT) calculations suggest that the strength of the molecule-surface interaction corresponds to a strong physisorption with no net charge transfer between the molecules and the corresponding substrates. This observation is strengthened by the use of first-principles non-local correlation vdW-DF functionals which provide a sound physical basis to include vdW interactions in DFT calculations. In particular we have employed two flavors of vdW-DF functionals which enabled us to determine the role of the non-local correlation effects in the molecule-surface bonding mechanism which cannot be assessed by using only semi-empirical vdW methods. Our study also reveals that the strength of the molecule-surface interaction can be influenced by the electronegativity of the B, C and N atoms.


Assuntos
Benzeno/química , Compostos de Boro/química , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Triazinas/química , Absorção , Benzeno/metabolismo , Compostos de Boro/metabolismo , Simulação por Computador , Grafite/metabolismo , Ligação de Hidrogênio , Teoria Quântica , Termodinâmica , Triazinas/metabolismo
18.
Mater Sociomed ; 24(2): 73-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23678311

RESUMO

INTRODUCTION: Timely diagnosis is a prerequisite for the successful treatment of malignant skin tumors. Late diagnosis leads a patient into a situation of losing valuable time and chance for cure. MATERIAL AND METHODS: A prospective study was conducted from February 2006 until August 2011 which analyzed the reasons that led to establishing the diagnosis of malignant skin tumors in 220 patients. Patients were divided into two groups: Group A (102 patients), patients with diagnosed melanoma, and group B (118 patients) of patients suffering from basocellular (BCC) and planocellular cell (PCC) skin cancer. Parameters for comparison of analysis results were the reasons for coming to examination and reasons for not coming to the examination, because of which skin cancers were not diagnosed in time. GOAL: To determine the factors that influences the establishment of late diagnosis and treatment of skin tumors. RESULTS: It was confirmed that the prejudices of patients that tumors of the skin "should not be operated because it is dangerous" is the main reason for late diagnosis. At the same time it is confirmed that the belief that it is unnecessary to operate congenital changes of the skin is the second most important reason for delayed diagnosis of malignant skin tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA