Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(26): 15230-15241, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32513711

RESUMO

Mutations in UBQLN2 cause amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neurodegenerations. However, the mechanism by which the UBQLN2 mutations cause disease remains unclear. Alterations in proteins involved in autophagy are prominent in neuronal tissue of human ALS UBQLN2 patients and in a transgenic P497S UBQLN2 mouse model of ALS/FTD, suggesting a pathogenic link. Here, we show UBQLN2 functions in autophagy and that ALS/FTD mutant proteins compromise this function. Inactivation of UBQLN2 expression in HeLa cells reduced autophagic flux and autophagosome acidification. The defect in acidification was rescued by reexpression of wild type (WT) UBQLN2 but not by any of the five different UBQLN2 ALS/FTD mutants tested. Proteomic analysis and immunoblot studies revealed P497S mutant mice and UBQLN2 knockout HeLa and NSC34 cells have reduced expression of ATP6v1g1, a critical subunit of the vacuolar ATPase (V-ATPase) pump. Knockout of UBQLN2 expression in HeLa cells decreased turnover of ATP6v1g1, while overexpression of WT UBQLN2 increased biogenesis of ATP6v1g1 compared with P497S mutant UBQLN2 protein. In vitro interaction studies showed that ATP6v1g1 binds more strongly to WT UBQLN2 than to ALS/FTD mutant UBQLN2 proteins. Intriguingly, overexpression of ATP6v1g1 in UBQLN2 knockout HeLa cells increased autophagosome acidification, suggesting a therapeutic approach to overcome the acidification defect. Taken together, our findings suggest that UBQLN2 mutations drive pathogenesis through a dominant-negative loss-of-function mechanism in autophagy and that UBQLN2 functions as an important regulator of the expression and stability of ATP6v1g1. These findings may have important implications for devising therapies to treat UBQLN2-linked ALS/FTD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/genética , Autofagossomos/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/genética , Demência/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Relacionadas à Autofagia/genética , Biomarcadores/metabolismo , Linhagem Celular , Demência/metabolismo , Demência/patologia , Predisposição Genética para Doença , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Ligação Proteica , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Regulação para Cima , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
2.
PLoS Pathog ; 14(9): e1007283, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30235355

RESUMO

Synaptic degeneration is one of the earliest pathological correlates of prion disease, and it is a major determinant of the progression of clinical symptoms. However, the cellular and molecular mechanisms underlying prion synaptotoxicity are poorly understood. Previously, we described an experimental system in which treatment of cultured hippocampal neurons with purified PrPSc, the infectious form of the prion protein, induces rapid retraction of dendritic spines, an effect that is entirely dependent on expression of endogenous PrPC by the target neurons. Here, we use this system to dissect pharmacologically the underlying cellular and molecular mechanisms. We show that PrPSc initiates a stepwise synaptotoxic signaling cascade that includes activation of NMDA receptors, calcium influx, stimulation of p38 MAPK and several downstream kinases, and collapse of the actin cytoskeleton within dendritic spines. Synaptic degeneration is restricted to excitatory synapses, spares presynaptic structures, and results in decrements in functional synaptic transmission. Pharmacological inhibition of any one of the steps in the signaling cascade, as well as expression of a dominant-negative form of p38 MAPK, block PrPSc-induced spine degeneration. Moreover, p38 MAPK inhibitors actually reverse the degenerative process after it has already begun. We also show that, while PrPC mediates the synaptotoxic effects of both PrPSc and the Alzheimer's Aß peptide in this system, the two species activate distinct signaling pathways. Taken together, our results provide powerful insights into the biology of prion neurotoxicity, they identify new, druggable therapeutic targets, and they allow comparison of prion synaptotoxic pathways with those involved in other neurodegenerative diseases.


Assuntos
Príons/metabolismo , Príons/patogenicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Potenciais Pós-Sinápticos Excitadores , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Proteínas PrPSc/patogenicidade , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
3.
Proc Natl Acad Sci U S A ; 113(47): E7580-E7589, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27834214

RESUMO

Missense mutations in ubiquilin 2 (UBQLN2) cause ALS with frontotemporal dementia (ALS-FTD). Animal models of ALS are useful for understanding the mechanisms of pathogenesis and for preclinical investigations. However, previous rodent models carrying UBQLN2 mutations failed to manifest any sign of motor neuron disease. Here, we show that lines of mice expressing either the ALS-FTD-linked P497S or P506T UBQLN2 mutations have cognitive deficits, shortened lifespans, and develop motor neuron disease, mimicking the human disease. Neuropathologic analysis of the mice with end-stage disease revealed the accumulation of ubiquitinated inclusions in the brain and spinal cord, astrocytosis, a reduction in the number of hippocampal neurons, and reduced staining of TAR-DNA binding protein 43 in the nucleus, with concomitant formation of ubiquitin+ inclusions in the cytoplasm of spinal motor neurons. Moreover, both lines displayed denervation muscle atrophy and age-dependent loss of motor neurons that correlated with a reduction in the number of large-caliber axons. By contrast, two mouse lines expressing WT UBQLN2 were mostly devoid of clinical and pathological signs of disease. These UBQLN2 mouse models provide valuable tools for identifying the mechanisms underlying ALS-FTD pathogenesis and for investigating therapeutic strategies to halt disease.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/genética , Mutação de Sentido Incorreto , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Demência Frontotemporal/etiologia , Demência Frontotemporal/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Camundongos , Neurônios Motores/metabolismo , Ubiquitinação
4.
ACS Chem Neurosci ; 15(11): 2265-2282, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743607

RESUMO

Prion diseases are invariably fatal neurodegenerative diseases of humans and other animals for which there are no effective treatment options. Previous work from our laboratory identified phenethylpiperidines as a novel class of anti-prion compounds. While working to identify the molecular target(s) of these molecules, we unexpectedly discovered ten novel antiprion compounds based on their known ability to bind to the sigma receptors, σ1R and σ2R, which are currently being tested as therapeutic or diagnostic targets for cancer and neuropsychiatric disorders. Surprisingly, however, knockout of the respective genes encoding σ1R and σ2R (Sigmar1 and Tmem97) in prion-infected N2a cells did not alter the antiprion activity of these compounds, demonstrating that these receptors are not the direct targets responsible for the antiprion effects of their ligands. Further investigation of the most potent molecules established that they are efficacious against multiple prion strains and protect against downstream prion-mediated synaptotoxicity. While the precise details of the mechanism of action of these molecules remain to be determined, the present work forms the basis for further investigation of these compounds in preclinical studies. Given the therapeutic utility of several of the tested compounds, including rimcazole and haloperidol for neuropsychiatric conditions, (+)-pentazocine for neuropathic pain, and the ongoing clinical trials of SA 4503 and ANAVEX2-73 for ischemic stroke and Alzheimer's disease, respectively, this work has immediate implications for the treatment of human prion disease.


Assuntos
Doenças Priônicas , Receptores sigma , Receptores sigma/metabolismo , Receptores sigma/efeitos dos fármacos , Animais , Ligantes , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Camundongos , Humanos , Príons/efeitos dos fármacos , Príons/metabolismo , Receptor Sigma-1 , Linhagem Celular Tumoral
5.
Stem Cell Reports ; 19(10): 1474-1488, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39332406

RESUMO

Genetic prion diseases are caused by mutations in PRNP, which encodes the prion protein (PrPC). Why these mutations are pathogenic, and how they alter the properties of PrPC are poorly understood. We have consented and accessed 22 individuals of a multi-generational Israeli family harboring the highly penetrant E200K PRNP mutation and generated a library of induced pluripotent stem cells (iPSCs) representing nine carriers and four non-carriers. iPSC-derived neurons from E200K carriers display abnormal synaptic architecture characterized by misalignment of postsynaptic NMDA receptors with the cytoplasmic scaffolding protein PSD95. Differentiated neurons from mutation carriers do not produce PrPSc, the aggregated and infectious conformer of PrP, suggesting that loss of a physiological function of PrPC may contribute to the disease phenotype. Our study shows that iPSC-derived neurons can provide important mechanistic insights into the pathogenesis of genetic prion diseases and can offer a powerful platform for testing candidate therapeutics.


Assuntos
Síndrome de Creutzfeldt-Jakob , Células-Tronco Pluripotentes Induzidas , Neurônios , Sinapses , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Sinapses/metabolismo , Sinapses/patologia , Feminino , Mutação , Masculino , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Diferenciação Celular/genética , Linhagem , Adulto , Pessoa de Meia-Idade , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Proteínas PrPSc/metabolismo , Proteínas PrPSc/genética
6.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38077011

RESUMO

Prion diseases are invariably fatal neurodegenerative diseases of humans and other animals for which there are no treatment options. Previous work from our laboratory identified phenethyl piperidines as novel class of anti-prion compounds. While working to identify the molecular target(s) of these molecules, we unexpectedly discovered ten novel anti-prion compounds based on their known ability to bind to the sigma receptors, σ 1 R and 2 R, which are currently being tested as therapeutic or diagnostic targets for cancer and neuropsychiatric disorders. Surprisingly, however, knockout of the respective genes encoding σ 1 R and σ 2 R ( Sigmar1 and Tmem97 ), in prion infected N2a cells did not alter the anti-prion activity of these compounds, demonstrating that these receptors are not the direct targets responsible the anti-prion effects of their ligands. Further investigation of the most potent molecules established that they are efficacious against multiple prion strains and protect against downstream prion-mediated synaptotoxicity. While the precise details of the mechanism of action of these molecules remains to be determined, the present work forms the basis for further investigations of these compounds in pre-clinical studies. Given the therapeutic utility of several of the tested compounds, including rimcazole and haloperidol for neuropsychiatric conditions, (+)-pentazocine for neuropathic pain, and the ongoing clinical trials of SA 4503 and ANAVEX2-73 for ischemic stroke and Alzheimer's disease, respectively, this work has immediate implications for the treatment of human prion disease.

7.
Brain Pathol ; 29(2): 263-277, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30588688

RESUMO

Although the mechanisms underlying prion propagation and infectivity are now well established, the processes accounting for prion toxicity and pathogenesis have remained mysterious. These processes are of enormous clinical relevance as they hold the key to identification of new molecular targets for therapeutic intervention. In this review, we will discuss two broad areas of investigation relevant to understanding prion neurotoxicity. The first is the use of in vitro experimental systems that model key events in prion pathogenesis. In this context, we will describe a hippocampal neuronal culture system we developed that reproduces the earliest pathological alterations in synaptic morphology and function in response to PrPSc . This system has allowed us to define a core synaptotoxic signaling pathway involving the activation of NMDA and AMPA receptors, stimulation of p38 MAPK phosphorylation and collapse of the actin cytoskeleton in dendritic spines. The second area concerns a striking and unexpected phenomenon in which certain structural manipulations of the PrPC molecule itself, including introduction of N-terminal deletion mutations or binding of antibodies to C-terminal epitopes, unleash powerful toxic effects in cultured cells and transgenic mice. We will describe our studies of this phenomenon, which led to the recognition that it is related to the induction of large, abnormal ionic currents by the structurally altered PrP molecules. Our results suggest a model in which the flexible N-terminal domain of PrPC serves as a toxic effector which is regulated by intramolecular interactions with the globular C-terminal domain. Taken together, these two areas of study have provided important clues to underlying cellular and molecular mechanisms of prion neurotoxicity. Nevertheless, much remains to be done on this next frontier of prion science.


Assuntos
Doenças Priônicas/genética , Príons/genética , Príons/toxicidade , Animais , Encéfalo/patologia , Linhagem Celular , Células Cultivadas , Espinhas Dendríticas/patologia , Hipocampo/patologia , Humanos , N-Metilaspartato/metabolismo , Neurônios/patologia , Fosforilação , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Doenças Priônicas/metabolismo , Transdução de Sinais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA