Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Anal Chem ; 95(32): 12080-12088, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37534668

RESUMO

Nanodiamonds (NDs) are carbon nanoparticles with a large refractive index, a high density, and exceptional chemical stability. When excited by green light, they can emit bright red fluorescence from implanted nitrogen-vacancy (NV) centers. Taking advantage of these properties, we have developed antibody-conjugated NDs as in vitro diagnostic sensors for two complementary assays: particle-enhanced turbidimetric immunoassay (PETIA) and spin-enhanced lateral flow immunoassay (SELFIA). To achieve this goal, monocrystalline diamond powders (∼100 nm in diameter) with or without NV implantation were first treated in molten KNO3 to reduce their size and shape inhomogeneity, followed by surface carboxylation in strong oxidative acids and non-covalent conjugation with antibodies in water. PETIA and SELFIA were carried out separately with a microplate reader and a magnetically modulated fluorescence analyzer. Using C-reactive protein (CRP) as the target antigen, we found that anti-CRP-conjugated NDs exhibited high colloidal stability over 1 month at 4 °C in buffer solution. The limits of detection for 3 µL of CRP sample solution were 0.06 µg/mL and 1 ng/mL with variation coefficients of less than 10 and 15% for PETIA and SELFIA, respectively. These two methods together provide a detection range of 1 ng/mL-10 µg/mL, potentially useful for clinical applications. This work represents the first practical use of rounded monocrystalline NDs as in vitro diagnostic reagents.


Assuntos
Técnicas Biossensoriais , Imunoconjugados , Nanodiamantes , Nanodiamantes/química , Imunoensaio , Diamante , Nitrogênio/química , Anticorpos
2.
J Proteome Res ; 21(1): 67-76, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34928606

RESUMO

Human serum is one of the most attractive specimens in biomarker research. However, its overcomplicated properties have hindered the analysis of low-abundance proteins by conventional mass spectrometry techniques. This work proposes an innovative strategy for utilizing nanodiamonds (NDs) in combination with Triton X-114 protein extraction to fractionate the crude serum to six pH-tuned fractions, simplifying the overall proteome and facilitating protein profiling with high efficiency. A total of 663 proteins are identified and evenly distributed among the fractions along with 39 FDA-approved biomarkers─a remarkable increase from the 230 proteins found in unfractionated crude serum. In the low-abundance protein section, 88 proteins with 7 FDA-approved biomarkers are detected─a marked increase from the 15 proteins (2 biomarkers) observed in the untreated sample. Notably, fractions at pH 11, derived from the aqueous phase of detergent separation, suggest potential applications in rapid and robust serum proteome analysis. Notably, by outlining the excellent properties of NDs for proteomic research, this work suggests a promising extraction protocol utilizing the great compatibility of NDs with streamlined serum proteomics and identifies potential avenues for future developments. Finally, we believe that this work not just improves shotgun proteomics but also opens up studies on the interaction between NDs and the human proteome. Data are available via ProteomeXchange with the identifier PXD029710.


Assuntos
Nanodiamantes , Proteoma , Humanos , Nanodiamantes/análise , Octoxinol , Proteoma/análise , Proteômica/métodos , Extração em Fase Sólida
3.
Anal Chem ; 94(51): 17819-17826, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36512513

RESUMO

Dengue fever is a global mosquito-borne viral infectious disease that has, in recent years, rapidly spread to almost all regions of the world. Lack of vaccination and directed treatment makes detection at the infection's early stages extremely important for disease prevention and clinical care. In this paper, we developed a rapid and highly sensitive dengue detection tool using a novel platform of diagnosis, called spin-enhanced lateral flow immunoassay (SELFIA) with a fluorescent nanodiamond (FND) as a reporter. Taking advantage of the unique magneto-optical properties of negatively charged nitrogen-vacancy centers in the FND, the SELFIA platform utilizes alternating electromagnetic fields to modulate signals from FND's fluorescence to provide sensitive and specific results. With sandwich SELFIA, we could efficiently detect all four dengue non-structural protein (NS1) serotypes (DV1, DV2, DV3, and DV4). The lowest detection concentration of the dengue NS1 antigens varied from 0.1 to 1.3 ng/mL, which is among the lowest limits of detection to date. The FND-based SELFIA technique is up to 500 and 5000 times more sensitive than carbon black and conventional gold nanoparticles, respectively. By using different anti-NS1 antibodies, we could differentiate the NS1 antigen serotypes contained in the tested samples via three simultaneous assays. Proposed SELFIA allows for both qualitative and quantitative differentiation between different NS1 protein serotypes, which will assist in the development of a highly sensitive and specific detection platform for dengue screening that has the potential to detect the disease at its early stages, especially in high-risk and limited-resource areas.


Assuntos
Vírus da Dengue , Dengue , Nanopartículas Metálicas , Animais , Humanos , Sorogrupo , Ouro , Proteínas não Estruturais Virais , Imunoensaio/métodos , Anticorpos Antivirais , Dengue/diagnóstico , Sensibilidade e Especificidade , Ensaio de Imunoadsorção Enzimática/métodos
4.
J Mater Chem B ; 12(14): 3533-3542, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526339

RESUMO

Fluorescent nanodiamonds (FNDs) are carbon nanoparticles containing a dense ensemble of nitrogen-vacancy defects as color centers. These centers have exceptional photostability and unique quantum properties, making them useful for ultrasensitive biosensing applications. This work employed FNDs conjugated with antibodies as magneto-optical immunosensors for tuberculosis (TB) diagnostics using competitive spin-enhanced lateral flow immunoassay (SELFIA). ESAT6 (6-kDa early secretory antigenic target) of Mycobacterium tuberculosis is a clinical marker of TB. We evaluated the assay's performance using the recombinant ESAT6 antigen and its antibodies noncovalently coated on FNDs. A detection limit of ∼0.02 ng mL-1 was achieved with the lateral flow membrane strip pre-structured with a narrow channel of 1 mm width. Adopting a cut-off value of 24.0 ng mm-1 for 100-nm FNDs on the strips, the method detected 49 out of 50 clinical samples with Mycobacterium tuberculosis complexes. In contrast, none of the assays for 10 clinical samples with non-tuberculous mycobacteria (NTM) isolates exhibited the presence of ESAT6. These results suggest that the SELFIA platform is applicable for TB detection and can differentiate TB from NTM infections, which also affect the human respiratory system. The FND-enabled immunosensing techniques are versatile and promising for early detection of TB and other diseases, opening a new avenue for biomedical applications of carbon-based nanomaterials.


Assuntos
Técnicas Biossensoriais , Mycobacterium tuberculosis , Nanodiamantes , Tuberculose , Humanos , Imunoensaio , Tuberculose/diagnóstico , Corantes , Anticorpos
5.
Anal Chim Acta ; 1239: 340651, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628748

RESUMO

Epidemiological control and public health monitoring during the outbreaks of infectious viral diseases rely on the ability to detect viral pathogens. Here we demonstrate a rapid, sensitive, and selective nanotechnology-enhanced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection based on the surface-enhanced Raman scattering (SERS) responses from the plasma-engineered, variant-specific antibody-functionalized silver microplasma-engineered nanoassemblies (AgMEN) interacting with the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins. The three-dimensional (3D) porous AgMEN with plasmonic-active nanostructures provide a high sensitivity to virus detection via the remarkable SERS signal collection. Moreover, the variant-specific antibody-functionalization on the SERS-active AgMEN enabled the high selectivity of the SARS-CoV-2 S variants, including wild-type, Alpha, Delta, and Omicron, under the simulated human saliva conditions. The exceptional ultrahigh sensitivity of our SERS biosensor was demonstrated via SARS-CoV-2 S and N proteins at the detection limit of 1 fg mL-1 and 0.1 pg mL-1, respectively. Our work demonstrates a versatile SERS-based detection platform can be applied for the ultrasensitive detection of virus variants, infectious diseases, and cancer biomarkers.


Assuntos
COVID-19 , Nanoestruturas , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Análise Espectral Raman/métodos , Glicoproteína da Espícula de Coronavírus , Limite de Detecção , Nanoestruturas/química
6.
J Alzheimers Dis ; 93(3): 821-845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125550

RESUMO

Alzheimer's disease (AD) is a pathological disorder defined by the symptoms of memory loss and deterioration of cognitive abilities over time. Although the etiology is complex, it is mainly associated with the accumulation of toxic amyloid-ß peptide (Aß) aggregates and tau protein-induced neurofibrillary tangles (NFTs). Even now, creating non-invasive, sensitive, specific, and cost-effective diagnostic methods for AD remains challenging. Over the past few decades, polymers, and nanomaterials (e.g., nanodiamonds, nanogold, quantum dots) have become attractive and practical tools in nanomedicine for diagnosis and treatment. This review focuses on current developments in sensing methods such as enzyme-linked immunosorbent assay (ELISA) and surface-enhanced Raman scattering (SERS) to boost the sensitivity in detecting related biomarkers for AD. In addition, optical analysis platforms such as ELISA and SERS have found increasing popularity among researchers due to their excellent sensitivity and specificity, which may go as low as the femtomolar range. While ELISA offers easy technological usage and high throughput, SERS has the advantages of improved mobility, simple electrical equipment integration, and lower cost. Both portable optical sensing techniques are highly superior in terms of sensitivity, specificity, human application, and practicality, enabling the early identification of AD biomarkers.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Proteínas tau , Peptídeos beta-Amiloides , Ensaio de Imunoadsorção Enzimática , Neuroimagem , Biomarcadores
7.
Biosensors (Basel) ; 12(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36551148

RESUMO

The ability to precisely monitor the intracellular temperature directly contributes to the essential understanding of biological metabolism, intracellular signaling, thermogenesis, and respiration. The intracellular heat generation and its measurement can also assist in the prediction of the pathogenesis of chronic diseases. However, intracellular thermometry without altering the biochemical reactions and cellular membrane damage is challenging, requiring appropriately biocompatible, nontoxic, and efficient biosensors. Bright, photostable, and functionalized fluorescent nanodiamonds (FNDs) have emerged as excellent probes for intracellular thermometry and magnetometry with the spatial resolution on a nanometer scale. The temperature and magnetic field-dependent luminescence of naturally occurring defects in diamonds are key to high-sensitivity biosensing applications. Alterations in the surface chemistry of FNDs and conjugation with polymer, metallic, and magnetic nanoparticles have opened vast possibilities for drug delivery, diagnosis, nanomedicine, and magnetic hyperthermia. This study covers some recently reported research focusing on intracellular thermometry, magnetic sensing, and emerging applications of artificial intelligence (AI) in biomedical imaging. We extend the application of FNDs as biosensors toward disease diagnosis by using intracellular, stationary, and time-dependent information. Furthermore, the potential of machine learning (ML) and AI algorithms for developing biosensors can revolutionize any future outbreak.


Assuntos
Técnicas Biossensoriais , Nanodiamantes , Termometria , Inteligência Artificial , Polímeros , Luminescência , Termometria/métodos , Técnicas Biossensoriais/métodos
8.
Anal Chim Acta ; 1230: 340389, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36192062

RESUMO

SARS-CoV-2 viruses, responsible for the COVID-19 pandemic, continues to evolve into new mutations, which poses a significant threat to public health. Current testing methods have some limitations, such as long turnaround times, high costs, and professional laboratory requirements. In this report, the novel Spin-Enhanced Lateral Flow Immunoassay (SELFIA) platform and fluorescent nanodiamond (FND) reporter were utilized for the rapid detection of SARS-CoV-2 nucleocapsid and spike antigens from different variants, including wild-type (Wuhan-1), Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529). The SARS-CoV-2 antibodies were conjugated with FND via nonspecific binding, enabling the detection of SARS-CoV-2 antigens via both direct and competitive SELFIA format. Direct SELFIA was performed by directly adding the SARS-CoV-2 antibodies-conjugated FND on the antigens-immobilized nitrocellulose (NC) membrane. Conversely, the SARS-CoV-2 antigen-containing sample was first incubated with the antibodies-conjugated FND, and then dropped on the antigen-immobilized NC membrane to carry out the competitive SELFIA. The results suggested that S44F anti-S IgG antibody can be efficiently used for the detection of wild-type, Alpha, Delta, and Omicron variants spike antigens. Findings were comparable in direct SELFIA, competitive SELFIA, and ELISA. A detection limit of 1.94, 0.77, 1.14, 1.91, and 1.68 ng/mL can be achieved for SARS-CoV-2 N protein, wild-type, Alpha, Delta, and Omicron S proteins, respectively, via competitive SELFIA assay. These results suggest that a direct SELFIA assay can be used for antibody/antigen pair screening in diagnosis development, while the competitive SELFIA assay can serve as an accurate quantitative diagnostic tool. The simplicity and rapidity of the SELFIA platform were demonstrated, which can be leveraged in the detection of other infectious diseases in the near future.


Assuntos
COVID-19 , Nanodiamantes , Anticorpos Antivirais , COVID-19/diagnóstico , Colódio , Humanos , Imunoensaio/métodos , Imunoglobulina G , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
9.
Carbohydr Res ; 508: 108397, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34280802

RESUMO

Carbohydrate functionalized polymers or Glycopolymers have earned a great deal of interest in recent times for their potential biomedical applications. In the present study, a mannose containing glycopolymer was synthesized by cyclopolymerization of malonic acid derivative using second generation Hoveyda Grubbs' catalyst. Post-polymerization modification was done to install a propargyl moiety. Finally, functionalization of the propargylated polymer with 2-azidoethyl mannoside using azide-alkyne "click chemistry" furnished the target glycopolymer which was successfully characterized using NMR, FT-IR, mass spectroscopy and advanced polymer chromatography. The glycopolymer was found to self-assemble into capsule and spherical shape in water and DMSO respectively and these morphologies were observed through SEM and TEM. Upon interaction with Con A, the mannose containing glycopolymer showed an increment in aggregation induced fluorescence with increasing concentration of the lectin. In vitro cytotoxicity studies on MCF 7 cell line showed 90% cell viability up to glycopolymer concentration of 500 µg/mL.


Assuntos
Manose , Polimerização , Polímeros
10.
Chem Asian J ; 16(17): 2552-2558, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34296823

RESUMO

A pH-responsive smart nanocarrier with significant components was synthesized by conjugating the non-emissive anticancer drug methyl orange and polyethylene glycol derived folate moiety to the backbone of polynorbornene. Complete synthesis procedure and characterization methods of three monomers included in the work: norbornene-derived Chlorambucil (Monomer 1), norbornene grafted with polyethylene glycol, and folic acid (Monomer 2) and norbornene attached methyl orange (Monomer 3) connected to the norbornene backbone through ester linkage were clearly discussed. Finally, the random copolymer CHO PEG FOL METH was synthesized by ring-opening metathesis polymerization (ROMP) using Grubbs' second-generation catalyst. Advanced polymer chromatography (APC) was used to find the final polymer's molecular weight and polydispersity index (PDI). Dynamic light scattering, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were utilized to explore the prodrug's size and morphology. Release experiments of the anticancer drug, Chlorambucil and the coloring agent, methyl orange, were performed at different pH and time. Cell viability assay was carried out for determining the rate of survived cells, followed by the treatment of our final polymer named CHO PEG FOL METH.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Ácido Fólico/análogos & derivados , Plásticos/química , Polietilenoglicóis/química , Pró-Fármacos/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Compostos Azo/síntese química , Compostos Azo/química , Compostos Azo/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Clorambucila/síntese química , Clorambucila/química , Clorambucila/toxicidade , Corantes/síntese química , Corantes/química , Corantes/toxicidade , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/toxicidade , Doxorrubicina/síntese química , Doxorrubicina/química , Doxorrubicina/toxicidade , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Ácido Fólico/síntese química , Ácido Fólico/química , Ácido Fólico/toxicidade , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Plásticos/síntese química , Plásticos/toxicidade , Polietilenoglicóis/síntese química , Polietilenoglicóis/toxicidade , Polimerização , Pró-Fármacos/síntese química , Pró-Fármacos/toxicidade
11.
ACS Appl Bio Mater ; 4(12): 8325-8332, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35005953

RESUMO

Hyaluronic acid (HA) is conjugated with BHQ3 moiety with azo bonds to prepare hypoxia-responsive polymer conjugate. Because of the amphiphilic nature, the polymer conjugate self-assembles to HA-BHQ3 nanoparticles (NPs). The anticancer drug doxorubicin (DOX) is loaded into the NPs. In the physiological environment, DOX is released slowly. In contrast, under hypoxic conditions, the azo bond in BHQ3 is cleaved, thus significantly enhancing the DOX release rate. For instance, after 24 h, 25% of DOX is released under normal conditions, while 74% of DOX is released under hypoxic conditions. In vitro cytotoxicity demonstrates higher toxicity in the hypoxic conditions. DOX@HA-BHQ3 NPs exhibit greater toxicity levels against 4T1 cells in hypoxic conditions. The fluorescent microscope images confirm the oxygen-dependent intracellular DOX release from the NPs. The in vivo biodistribution results suggest the tumor targetability of HA-BHQ3 NPs in 4T1 tumor-bearing mice.


Assuntos
Ácido Hialurônico , Neoplasias , Animais , Doxorrubicina/uso terapêutico , Ácido Hialurônico/química , Hipóxia , Camundongos , Neoplasias/tratamento farmacológico , Polímeros , Distribuição Tecidual
12.
Biosensors (Basel) ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34562885

RESUMO

The development of reliable and robust diagnostic tests is one of the most efficient methods to limit the spread of coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, most laboratory diagnostics for COVID-19, such as enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR), are expensive, time-consuming, and require highly trained professional operators. On the other hand, the lateral flow immunoassay (LFIA) is a simpler, cheaper device that can be operated by unskilled personnel easily. Unfortunately, the current technique has some limitations, mainly inaccuracy in detection. This review article aims to highlight recent advances in novel lateral flow technologies for detecting SARS-CoV-2 as well as innovative approaches to achieve highly sensitive and specific point-of-care testing. Lastly, we discuss future perspectives on how smartphones and Artificial Intelligence (AI) can be integrated to revolutionize disease detection as well as disease control and surveillance.


Assuntos
Teste para COVID-19/instrumentação , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Inteligência Artificial , COVID-19/imunologia , Teste para COVID-19/economia , Humanos , Imunoensaio , Testes Imediatos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Smartphone
13.
Appl Biochem Biotechnol ; 191(1): 29-44, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31933125

RESUMO

Poly(dimethylsiloxane) (PDMS) has been widely used in the field of microfluidics, optical systems, and sensors. However, the hydrophobic nature of PDMS leads to low surface wettability and biofouling problems due to the nonspecific proteins-hydrophobic surface interactions and cell/bacterial adhesion. In this work, the PDMS surface was first introduced with amino groups (PDMS-NH2) via KOH-catalyzed reaction with 3-aminopropyltriethoxysilane (APTES). The PDMS-NH2 was then grafted with poly(N-vinylpyrrolidone) (PVP) based on the self-adhesion reaction between the amino surface and catechol-functionalized PVP (CA-PLL-PVP). CA-PLL-PVP as a comb-polymer was synthesized by conjugating PVP-COOH along with caffeic acid to the ε-polylysine backbone. A significantly enhanced water wettability was observed with contact angles dropped from 116° to 14° after coating with CA-PLL-PVP. The coated surface demonstrated excellent antifouling performance that no appreciable Staphylococcus epidermidis biofilm formation could be observed. This novel facile antifouling coating on PDMS surface may find greater biomedical applications to eliminate the potential adherence problems caused by natural biofouling.


Assuntos
Anti-Infecciosos/química , Biofilmes/crescimento & desenvolvimento , Dimetilpolisiloxanos/química , Povidona/análogos & derivados , Staphylococcus epidermidis/fisiologia , Povidona/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA