Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 16(24): e2000020, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32419389

RESUMO

Transparent flexible energy storage devices are considered as important chains in the next-generation, which are able to store and supply energy for electronic devices. Here, aluminum-doped zinc oxide (AZO) nanorods (NRs) and nickel oxide (NiO)-coated AZO NRs on muscovites are fabricated by a radio frequency (RF) magnetron sputtering deposition method. Interestingly, AZO NRs and AZO/NiO NRs are excellent electrodes for energy storage application with high optical transparency, high conductivity, large surface area, stability under compressive and tensile strain down to a bending radius of 5 mm with 1000 bending cycles. The obtained symmetric solid-state supercapacitors based on these electrodes exhibit good performance with a large areal specific capacitance of 3.4 mF cm-2 , long cycle life 1000 times, robust mechanical properties, and high chemical stability. Furthermore, an AZO/NiO//Zn battery based on these electrodes is demonstrated, yielding a discharge capacity of 195 mAh g-1 at a current rate of 8 A g-1 and a discharge capacity of over 1000 cycles with coulombic efficiency to 92%. These results deliver a concept of opening a new opportunity for future applications in transparent flexible energy storage.

2.
ACS Omega ; 7(12): 10115-10126, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382300

RESUMO

The aim of this study is to prepare a two-dimensional (2D) WO3·H2O nanostructure assembly into a flower shape with good chemical stability for electrochemical studies of catalyst and energy storage applications. The 2D-WO3·H2O nanoflowers structure is created by a fast and simple process at room condition. This cost-effective and scalable technique to obtain 2D-WO3·H2O nanoflowers illustrates two attractive applications of electrochemical capacitor with an excellent energy density value of 25.33 W h kg-1 for high power density value of 1600 W kg-1 and good hydrogen evolution reaction results (low overpotential of 290 mV at a current density of 10 mA cm-2 with a low Tafel slope of 131 mV dec-1). A hydrogen evolution reaction (HER) study of WO3 in acidic media of 0.5 M H2SO4 and electrochemical capacitor (supercapacitors) in 1 M Na2SO4 aqueous electrolyte (three electrode system measurements) demonstrates highly desirable characteristics for practical applications. Our design for highly uniform 2D-WO3·H2O as catalyst material for HER and active material for electrochemical capacitor studies offers an excellent foundation for design and improvement of electrochemical catalyst based on 2D-transition metal oxide materials.

3.
RSC Adv ; 12(3): 1515-1526, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35425167

RESUMO

Kitchen sea salt or table salt is used every day by cooks as a food seasoning. Here, it is introduced into a gel polymer (poly(vinyl) alcohol (PVA)-table salt) for use as an electrolyte, and an electrode was constructed from graphene nanosheets for use as symmetrical solid-state supercapacitors. The graphene sheets are prepared by a pulse control plasma method and used as an electrode material, and were studied by X-ray diffraction (XRD), Raman spectroscopy, as well as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A specific capacitance of 117.6 F g-1 at 5 mV s-1 was obtained in a three electrode system with table sea salt as an aqueous electrolyte. For a symmetrical solid-state supercapacitor: graphene/PVA-table sea salt/graphene gave a good specific capacitance of 31.67 F g-1 at 0.25 A g-1 with an energy density of 6.33 W h kg-1 at a power density of 600 W kg-1, with good charge-discharge stability, which was 87% after 8000 cycles. Thus, the development of table sea salt as an environmentally friendly electrolyte has a good potential for use in energy storage applications.

4.
RSC Adv ; 12(17): 10608-10618, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35425023

RESUMO

In this study, we provide a simple and green approach to recycle waste zinc carbon batteries for making carbon dots and porous carbon material. The carbon dots are easily synthesized by one green step, the hydrothermal treatment of a carbon rod in a mixture of DI water and pure ethanol to obtain a blue fluorescence under UV light, which can be used directly as a fluorescence ink. The as-prepared carbon dot process give typical dots with a uniform diameter from 3 to 8 nm with a strong slight blue fluorescent. The porous carbon material is also recycled from carbon powder in a waste battery via one green step annealing process without any chemical activation and with a hierarchically porous structure. This porous carbon material is demonstrated as an electrode for symmetrical solid state supercapacitors (SSCs) in a sandwich structure: porous carbon/PVA-KOH/porous carbon. The SSCs using recycled porous carbon electrodes exhibit a good energy density of 4.58 W h kg-1 at a power density of 375 W kg-1 and 97.6% retention after 2000 cycles. The facile one green step of hydrothermal and also that of calcination provide a promising strategy to recycle waste zinc carbon batteries, which transfers the excellent applications.

5.
ACS Omega ; 7(29): 25433-25442, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910106

RESUMO

Herein, for the first time, we present two-dimensional (2D) NH4V3O8 nanoflakes as an excellent material for both energy conversion of the hydrogen evolution reaction and storage of supercapacitors by a simple and fast two-step synthesis, which exhibit a completely sheet-like morphology, high crystallinity, good specific surface area, and also stability, as determined by thermogravimetric analysis. The 2D-NH4V3O8 flakes show an acceptable hydrogen evolution performance in 0.5 M H2SO4 on a glassy carbon electrode (GCE) coated with 2D-NH4V3O8, which results in a low overpotential of 314 mV at -10 mA cm-2 with an excellent Tafel slope as low as 90 mV dec-1. So far, with the main focus on energy storage, 2D-NH4V3O8 nanoflakes were found to be ideal for supercapacitor electrodes. The NH4V3O8 working electrode in 1 M Na2SO4 shows an excellent electrochemical capability of 274 F g-1 at 0.5 A g-1 for a maximum energy density of 38 W h kg-1 at a power density as high as 250 W kg-1. Moreover, the crystal structure of 2D-NH4V3O8 is demonstrated by density functional theory (DFT) computational simulation using three functionals, GGA, GGA + U, and HSE06. The simple preparation, low cost, and abundance of the NH4V3O8 material provide a promising candidate for not only energy conversion but also energy-storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA