Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Am Chem Soc ; 146(6): 3943-3954, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295342

RESUMO

CALF-20, a Zn-triazolate-based metal-organic framework (MOF), is one of the most promising adsorbent materials for CO2 capture. However, competitive adsorption of water severely limits its performance when the relative humidity (RH) exceeds 40%, limiting the potential implementation of CALF-20 in practical settings where CO2 is saturated with moisture, such as postcombustion flue gas. In this work, three newly designed MOFs related to CALF-20, denoted as NU-220, CALF-20M-w, and CALF-20M-e that feature hydrophobic methyltriazolate linkers, are presented. Inclusion of methyl groups in the linker is proposed as a strategy to improve the uptake of CO2 in the presence of water. Notably, both CALF-20M-w and CALF-20M-e retain over 20% of their initial CO2 capture efficiency at 70% RH─a threshold at which CALF-20 shows negligible CO2 uptake. Grand canonical Monte Carlo simulations reveal that the methyl group hinders water network formation in the pores of CALF-20M-w and CALF-20M-e and enhances their CO2 selectivity over N2 in the presence of a high moisture content. Moreover, calculated radial distribution functions indicate that introducing the methyl group into the triazolate linker increases the distance between water molecules and Zn coordination bonds, offering insights into the origin of the enhanced moisture stability observed for CALF-20M-w and CALF-20M-e relative to CALF-20. Overall, this straightforward design strategy has afforded more robust sorbents that can potentially meet the challenge of effectively capturing CO2 in practical industrial applications.

2.
Inorg Chem ; 60(12): 8566-8574, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34087066

RESUMO

Pentaphenylantimony (SbPh5) has been previously crystallized in either a square pyramidal or trigonal bipyramidal geometry. Investigation of the solution-state structure of SbPh5 has been hampered by the extreme fluxionality of this compound, but previous vibrational spectroscopic studies concluded that it maintains a square pyramidal geometry in solution. This non-VSEPR-compliant geometry, which is also assumed by BiPh5 in the solid state, stands in contrast to the trigonal bipyramidal geometries of PPh5 and AsPh5. A range of phenomena have been invoked to explain this discrepancy, most notably, the increased importance of relativistic effects as group 15 is descended. We present crystallographic, spectroscopic, and computational data revealing that SbPh5 in fact assumes the VSEPR-compliant trigonal bipyramidal geometry in solution. In particular, Sb X-ray absorption spectroscopy (XAS) was used to obtain geometry-sensitive spectra that do not suffer from the slow spectroscopic time scale that has prevented NMR studies from elucidating the structure of this fluxional molecule. Sb K-edge and LIII-edge XAS spectra of crystalline solids featuring SbPh5 in either a square pyramidal (nonsolvate) or trigonal bipyramidal (cyclohexane hemisolvate or THF hemisolvate) form were compared to spectra of SbPh5 in solution. The solution-state spectra agree with those from solids containing trigonal bipyramidal SbPh5. The most diagnostic spectroscopic feature was the distribution of intensity in the Sb LIII pre-edge features. These distributions were rationalized using time-dependent density functional theory calculations that take into account spin-orbit coupling. Our use of Sb XAS not only resolves a long-standing physical inorganic question but also demonstrates more widely the utility of XAS in establishing the structures of fluxional main-group compounds. This conclusion was further supported by solid- and solution-state Raman data. Finally, we note that the present high-resolution diffraction data allow τ for nonsolvated SbPh5 to be revised to 0.216.

3.
Org Biomol Chem ; 19(30): 6671-6681, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34278407

RESUMO

In order to explore how σ-hole potentials, as evaluated by molecular electrostatic potential (MEP) calculations, affect the ability of halogen atoms to engage in structure-directing intermolecular interactions, we synthesized four series of ethynyl halogen-substituted amide containing pyridines (activated targets); (N-(pyridin-2-yl)benzamides (Bz-act-X), N-(pyridin-2-yl)picolinamides (2act-X), N-(pyridin-2-yl)nicotinamides (3act-X) and N-(pyridin-2-yl) isonicotinamides (4act-X), where X = Cl/Br/I. The molecules are deliberately equipped with three distinctly different halogen-bond acceptor sites, π, N(pyr), and O[double bond, length as m-dash]C, to determine binding site preferences of different halogen-bond donors. Crystallographic data for ten (out of a possible twelve) new compounds were thus analyzed and compared with data for the corresponding unactivated species. The calculated MEPs of all the halogen atoms were higher in the activated targets in comparison to the unactivated targets and were in the order of iodine ≈ chloroethynyl < bromoethynyl < iodoethynyl. This increased positive σ-hole potential led to a subsequent increase in propensity for halogen-bond formation. Two of the four chloroethynyl structures showed halogen bonding, and all three of the structurally characterized bromoethynyl species engaged in halogen bonding. The analogous unactived species showed no halogen bonds. Each chloroethynyl donor selected a π-cloud as acceptor and the bromoethynyl halogen-bond donors opted for either π or N(pyr) sites, whereas all halogen bonds involving an iodoethynyl halogen-bond donor (including both polymorphs of Bz-act-I) engaged exclusively with a N(pyr) acceptor site.

4.
Inorg Chem ; 59(9): 6087-6099, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32309933

RESUMO

A series of rhenium(I) fac-tricarbonyl complexes containing pendent arylamine functionality in the second coordination sphere have been developed and studied as electrocatalysts for carbon dioxide (CO2) reduction. Aniline moieties were appended at the 6 position of a 2,2'-bipyridine (bpy) donor in which the primary amine was positioned at the ortho- (1-Re), meta- (2-Re), and para- (3-Re) sites of the aniline substituent to generate a family of isomers. The relationship between the catalyst structure and activity was explored across the series, and the catalytic performance was compared to that of the benchmark catalyst Re(bpy)(CO)3Cl (ReBpy). Catalysts 1-Re, 2-Re, and 3-Re outperform the benchmark catalyst both in anhydrous acetonitrile and with added trifluoroethanol (TFE) as an external proton source. In the presence of TFE, the aniline-substituted catalysts convert CO2 to carbon monoxide (CO) with high Faradaic efficiencies (≥89%) and have superior turnover frequencies (TOFs) relative to ReBpy (72.9 s-1), with 2-Re having the highest TOF of the series at 239 s-1, a value that is twice that of the next most active catalyst. TOFs of 123 and 109 s-1 were observed for the ortho- and para-substituted aniline complexes (1-Re and 3-Re), respectively. Indeed, catalytic activities vary widely across the series, showing a high sensitivity to the position of the amine functionality relative to the rhenium active site. IR and UV-vis spectroelectrochemical experiments were conducted on the aniline-substituted systems, revealing important differences between the catalysts and mechanistic insight.

5.
Inorg Chem ; 58(22): 15017-15020, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31674775

RESUMO

The separation of enantiomers is of considerable importance in the preparation of the compounds of biological interests, catalysis, and drug development. Here, we report a novel enantioseparation of styrene epoxides (SOs) resolved in the presence of a pair of enantio-enriched tetrahedral cages. Chiral neutral cages of formula [(Pd3X*)4(C6O4Cl2)6] ([X*]3- = RRR- or SSS-[PO(N(*CH(CH3)Ph)3]3-) are constructed from Pd3 building units supported by tris(imido)phosphate trianions and chloranilate linkers. These cages exhibit considerable enantioselective separation capabilities toward a series of styrene epoxides via a crystallization inclusion method. A highest enantiomeric excess (ee) value of up to 80% is achieved for the (R)-4-fluorostyrene oxide.

6.
J Biol Chem ; 288(45): 32663-32672, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24030827

RESUMO

Archaeoglobus fulgidus ferritin (AfFtn) is the only tetracosameric ferritin known to form a tetrahedral cage, a structure that remains unique in structural biology. As a result of the tetrahedral (2-3) symmetry, four openings (∼45 Šin diameter) are formed in the cage. This open tetrahedral assembly contradicts the paradigm of a typical ferritin cage: a closed assembly having octahedral (4-3-2) symmetry. To investigate the molecular mechanism affecting this atypical assembly, amino acid residues Lys-150 and Arg-151 were replaced by alanine. The data presented here shed light on the role that these residues play in shaping the unique structural features and biophysical properties of the AfFtn. The x-ray crystal structure of the K150A/R151A mutant, solved at 2.1 Šresolution, indicates that replacement of these key residues flips a "symmetry switch." The engineered molecule no longer assembles with tetrahedral symmetry but forms a typical closed octahedral ferritin cage. Small angle x-ray scattering reveals that the overall shape and size of AfFtn and AfFtn-AA in solution are consistent with those observed in their respective crystal structures. Iron binding and release kinetics of the AfFtn and AfFtn-AA were investigated to assess the contribution of cage openings to the kinetics of iron oxidation, mineralization, or reductive iron release. Identical iron binding kinetics for AfFtn and AfFtn-AA suggest that Fe(2+) ions do not utilize the triangular pores for access to the catalytic site. In contrast, relatively slow reductive iron release was observed for the closed AfFtn-AA, demonstrating involvement of the large pores in the pathway for iron release.


Assuntos
Proteínas Arqueais/química , Archaeoglobus fulgidus/química , Ferritinas/química , Ferro/química , Substituição de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/genética , Archaeoglobus fulgidus/metabolismo , Cristalografia por Raios X , Ferritinas/genética , Ferritinas/metabolismo , Ferro/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
7.
Biochemistry ; 52(22): 3888-98, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23656592

RESUMO

Human UDP-α-d-xylose synthase (hUXS) is a member of the extended short chain dehydrogenase/reductase (SDR) family of enzymes. Previous crystallographic studies have shown that hUXS conserves the same dimeric quaternary structure observed in other SDR enzymes. Here, we present evidence that hUXS also forms a tetramer in solution that is important for activity. Sedimentation velocity studies show that two hUXS dimers undergo a concentration-dependent association to form a tetramer with a Kd of 2.9 µM. The tetrameric complex is also observed in small-angle X-ray scattering (SAXS). The specific activity for the production of the reaction intermediate UDP-α-d-4-keto-xylose displays a hyperbolic dependence on protein concentration that is well modeled by an isotherm using the 2.9 µM Kd of the tetramer. Likewise, the rate of UDP-α-d-xylose production in the presence of increasing concentrations of the small molecule crowder trimethylamine N-oxide is consistent with the formation of a higher activity tetramer. We present several possible structural models of the hUXS tetramer based on (i) hUXS crystal packing, (ii) homology modeling, or (iii) ab initio simulated annealing of dimers. We analyze the models in terms of packing quality and agreement with SAXS data. The higher activity of the tetramer coupled with the relative instability of the complex suggests that an association-dissociation mechanism may regulate hUXS activity.


Assuntos
Carboxiliases/química , Multimerização Proteica , Carboxiliases/metabolismo , Cristalografia por Raios X , Humanos , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Soluções , Ultracentrifugação
8.
IUCrJ ; 9(Pt 5): 538-543, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36071805

RESUMO

Recent advances in X-ray instrumentation and sample injection systems have enabled serial crystallography of protein nanocrystals and the rapid structural analysis of dynamic processes. However, this progress has been restricted to large-scale X-ray free-electron laser (XFEL) and synchrotron facilities, which are often oversubscribed and have long waiting times. Here, we explore the potential of state-of-the-art laboratory X-ray systems to perform comparable analyses when coupled to micro- and millifluidic sample environments. Our results demonstrate that commercial small- and wide-angle X-ray scattering (SAXS/WAXS) instruments and X-ray diffractometers are ready to access samples and timescales (≳5 ms) relevant to many processes in materials science including the preparation of pharmaceuticals, nanoparticles and functional crystalline materials. Tests of different X-ray instruments highlighted the importance of the optical configuration and revealed that serial WAXS/XRD analysis of the investigated samples was only possible with the higher flux of a microfocus setup. We expect that these results will also stimulate similar developments for structural biology.

9.
Chempluschem ; 86(8): 1049-1057, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34008343

RESUMO

The interplay between hydrogen bonds (HBs) and halogen bonds (XBs), has been addressed by co-crystallizing two halogen bond donors, 1,4-diiodotetrafluorbenzene(DITFB) and 1,3,5-trifluoro-2,4,6-triiodobenzene(TITFB) with four series of targets; N-(pyridin-2-yl)benzamide (Bz-X), N-(pyridin-2-yl)picolinamides (2Pyr-X), N-(pyridin-2-yl)nicotinamides (3Pyr-X), N-(pyridin-2-yl)isonicotinamides (4Pyr-X); X=H/Cl/Br/I. The structural outcomes were compared with interactions in the targets themselves. 13 co-crystals were analysed by single-crystal X-ray diffraction (SCXRD). In all three co-crystals from the 2Pyr series, the intramolecular HB remained intact while the XB donors engaged with the N(pyr) or O=C sites. In the ten co-crystals from the other three series, the intermolecular HBs present in the individual targets were disrupted in 9/10 cases. Overall, the acceptor sites selected by the halogen-bond donors in these targets were distributed as follows; N(pyr)=81 %, O=C (15 %) or π (4 %).

10.
Chem Sci ; 12(47): 15620-15631, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-35003592

RESUMO

Flexible metal-organic frameworks offer a route towards high useable hydrogen storage capacities with minimal swings in pressure and temperature via step-shaped adsorption and desorption profiles. Yet, the understanding of hydrogen-induced flexibility in candidate storage materials remains incomplete. Here, we investigate the hydrogen storage properties of a quintessential flexible metal-organic framework, ZIF-7. We use high-pressure isothermal hydrogen adsorption measurements to identify the pressure-temperature conditions of the hydrogen-induced structural transition in ZIF-7. The material displays narrow hysteresis and has a shallow adsorption slope between 100 K and 125 K. To gain mechanistic insight into the cause of the phase transition correlating with stepped adsorption and desorption, we conduct powder neutron diffraction measurements of the D2 gas-dosed structures at conditions across the phase change. Rietveld refinements of the powder neutron diffraction patterns yield the structures of activated ZIF-7 and of the gas-dosed material in the dense and open phases. The structure of the activated phase of ZIF-7 is corroborated by the structure of the activated phase of the Cd congener, CdIF-13, which we report here for the first time based on single crystal X-ray diffraction measurements. Subsequent Rietveld refinements of the powder patterns for the gas-dosed structure reveal that the primary D2 adsorption sites in the dense phase form D2-arene interactions between adjacent ligands in a sandwich-like adsorption motif. These sites are prevalent in both the dense and the open structure for ZIF-7, and we hypothesize that they play an important role in templating the structure of the open phase. We discuss the implications of our findings for future approaches to rationally tune step-shaped adsorption in ZIF-7, its congeners, and flexible porous adsorbents in general. Lastly, important to the application of flexible frameworks, we show that pelletization of ZIF-7 produces minimal variation in performance.

11.
Struct Dyn ; 8(1): 010401, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33688553

RESUMO

In order to address the loss of crystallographic training opportunities resulting from the cancelation of conventional schools around the world due to the COVID-19 pandemic, we have started an online crystallography school with live lectures and live Q&A using Zoom Webinar. Since we were trying to reach a large audience in a relatively short period, we have limited the school to ten 1 h lectures covering practical aspects of small molecule crystallography including data collection, data processing, and structure solution. In the school, we also covered some advanced topics that students commonly see in their work: absolute structure determination, twinning, and disorder. To round out the education, we provided lectures on macromolecular crystallography and powder diffraction. For students to practice on their own, we used freely available data reduction and structure solution software, as well as datasets with which to practice. To give students credit for course completion, we provided an online exam and an electronic certificate of completion. In this editorial, we will provide some insight into the issues of holding lectures with up to 750 students of very diverse backgrounds and review the efficacy of the school in teaching crystallography for the two cohorts of students.

12.
Chem Sci ; 10(4): 1168-1175, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30774915

RESUMO

Hybrid organic-inorganic lead halide perovskites have attracted broad interest because of their unique optical and electronic properties, as well as good processability. Thermal properties of these materials, often overlooked, can provide additional critical information for developing new methods of thin film preparation using, for example, melt processing-i.e., making films of hybrid perovskites by solidification of a thin layer of the melt liquid. We demonstrate that it is possible to tune the melting temperature of layered hybrid lead iodide perovskites over the range of more than 100 degrees by modifying the structures of alkylammonium-derived organic cations. Through the introduction of alkyl chain branching and extending the length of the base alkylammonium cation, melting temperatures of as low as 172 °C can be achieved and high quality thin films of layered hybrid lead iodide perovskites can be made using a solvent-free melt process with no additives and in ambient air. Additionally, we show that a similar concept can be translated to the corresponding layered bromides, with slightly higher observed melting temperatures. The design rules established here can guide the discovery of new melt-processable perovskite materials for low-cost high performance devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA