Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(15): 3059-3067, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38545887

RESUMO

This article presents the controlled synthesis of a rare example of C,C'-linked bis-cyclam architecture in mild conditions through the "bis-aminal" route previously used for the advantageous synthesis of cyclam, N- and C-functional cyclams and N,N'-bis-cyclams. Two synthetic pathways were explored with the smart design of α,ß-unsaturated ketones or alkyl halides bis-cyclizing agents. The first led to the isolation of a key intermediate for the future design of N-functionalized bis-cyclams, whereas the second allowed the preparation of the targeted C,C'-xylylene-bis-cyclam under mild conditions with decent yield. This compound was then studied as a CXCR4 receptor inhibitor, one of the main applications known for bis-macrocyclic compounds, in particular in the context of HIV (human immunodeficiency virus) infection. Although results demonstrated that its potency is lower (i.e. 137-fold higher IC50) than the gold standard AMD3100 against HIV infection, clear evidence of CXCR4 inhibition is presented, confirming the potential of this novel architecture and related compounds in this research field.


Assuntos
Infecções por HIV , Compostos Heterocíclicos , Humanos , Receptores CXCR4/metabolismo , Compostos Heterocíclicos/farmacologia , Transdução de Sinais , Benzilaminas/farmacologia
2.
Inorg Chem ; 62(21): 8112-8122, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37191969

RESUMO

Although cyclam-based ligands are among the strongest copper(II) chelators available, they also usually present good affinity for other divalent cations [Zn(II), Ni(II), and Co(II)], with no copper(II)-specific cyclam ligands having been described so far. As such a property is highly desirable in a wide range of applications, we present herein two novel phosphine oxide-appended cyclam ligands that could be efficiently synthesized through Kabachnik-Fields type reactions on protected cyclam precursors. Their copper(II) coordination properties were closely studied by different physicochemical techniques [electron paramagnetic resonance (EPR) and ultraviolet-visible (UV-vis) spectroscopies, X-ray diffraction, and potentiometry]. The mono(diphenylphosphine oxide)-functionalized ligand demonstrated a copper(II)-specific behavior, unprecedented within the cyclam family of ligands. This was evidenced by UV-vis complexation and competition studies with the parent divalent cations. Density functional theory calculations also confirmed that the particular ligand geometry in the complexes strongly favors copper(II) coordination over that of competing divalent cations, rationalizing the specificity observed experimentally.

3.
Chem Commun (Camb) ; 59(7): 888-891, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36598060

RESUMO

Cyclam-picolinate chelators were functionalized via click chemistry with an additional carboxyl group for subsequent bioconjugation to antibodies or for the modification of the overall charge of the corresponding 64Cu-radiocomplexes. The C-aryl functionalization strategy developed here preserves the chemical properties of the radiocomplexes whilst deeply enhancing their applications within nuclear medicine.


Assuntos
Ciclamos , Compostos Heterocíclicos , Distribuição Tecidual , Compostos Heterocíclicos/química , Ácidos Picolínicos , Quelantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA