Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Virol ; 95(22): e0068421, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319152

RESUMO

Bracoviruses are domesticated viruses found in parasitic wasp genomes. They are composed of genes of nudiviral origin that are involved in particle production and proviral segments containing virulence genes that are necessary for parasitism success. During particle production, proviral segments are amplified and individually packaged as DNA circles in nucleocapsids. These particles are injected by parasitic wasps into host larvae together with their eggs. Bracovirus circles of two wasp species were reported to undergo chromosomal integration in parasitized host hemocytes, through a conserved sequence named the host integration motif (HIM). Here, we used bulk Illumina sequencing to survey integrations of Cotesia typhae bracovirus circles in the DNA of its host, the maize corn borer (Sesamia nonagrioides), 7 days after parasitism. First, assembly and annotation of a high-quality genome for C. typhae enabled us to characterize 27 proviral segments clustered in proviral loci. Using these data, we characterized large numbers of chromosomal integrations (from 12 to 85 events per host haploid genome) for all 16 bracovirus circles containing a HIM. Integrations were found in four S. nonagrioides tissues and in the body of a caterpillar in which parasitism had failed. The 12 remaining circles do not integrate but are maintained at high levels in host tissues. Surprisingly, we found that HIM-mediated chromosomal integration in the wasp germ line has occurred accidentally at least six times during evolution. Overall, our study furthers our understanding of wasp-host genome interactions and supports HIM-mediated chromosomal integration as a possible mechanism of horizontal transfer from wasps to their hosts. IMPORTANCE Bracoviruses are endogenous domesticated viruses of parasitoid wasps that are injected together with wasp eggs into wasp host larvae during parasitism. Several studies have shown that some DNA circles packaged into bracovirus particles become integrated into host somatic genomes during parasitism, but the phenomenon has never been studied using nontargeted approaches. Here, we use bulk Illumina sequencing to systematically characterize and quantify bracovirus circle integrations that occur in four tissues of the Mediterranean corn borer (Sesamia nonagrioides) during parasitism by the Cotesia typhae wasp. Our analysis reveals that all circles containing a HIM integrate at substantial levels (from 12 to 85 integrations per host cell, in total) in all tissues, while other circles do not integrate. In addition to shedding new light on wasp-bracovirus-host interactions, our study supports HIM-mediated chromosomal integration of bracovirus as a possible source of wasp-to-host horizontal transfer, with long-term evolutionary consequences.


Assuntos
DNA Viral , Genoma Viral , Interações Hospedeiro-Parasita/genética , Polydnaviridae/genética , Vespas/virologia , Animais , Transferência Genética Horizontal
2.
Mol Phylogenet Evol ; 161: 107161, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33794395

RESUMO

The noctuid genus Spodoptera currently consists of 31 species with varied host plant breadths, ranging from monophagous and oligophagous non-pest species to polyphagous pests of economic importance. Several of these pest species have become major invaders, colonizing multiple continents outside their native range. Such is the case of the infamous fall armyworm, Spodoptera frugiperda (J.E. Smith), which includes two recognized host strains that have not been treated as separate species. Following its accidental introduction to Africa in 2016, it quickly spread through Africa and Asia to Australia. Given that half the described Spodoptera species cause major crop losses, comparative genomics studies of several Spodoptera species have highlighted major adaptive changes in genetic architecture, possibly relating to their pest status. Several recent population genomics studies conducted on two species enable a more refined understanding of their population structures, migration patterns and invasion processes. Despite growing interest in the genus, the taxonomic status of several Spodoptera species remains unstable and evolutionary studies suffer from the absence of a robust and comprehensive dated phylogenetic framework. We generated mitogenomic data for 14 Spodoptera taxa, which are combined with data from 15 noctuoid outgroups to generate a resolved mitogenomic backbone phylogeny using both concatenation and multi-species coalescent approaches. We combine this backbone with additional mitochondrial and nuclear data to improve our understanding of the evolutionary history of the genus. We also carry out comprehensive dating analyses, which implement three distinct calibration strategies based on either primary or secondary fossil calibrations. Our results provide an updated phylogenetic framework for 28 Spodoptera species, identifying two well-supported ecologically diverse clades that are recovered for the first time. Well-studied larvae in each of these clades are characterized by differences in mandibular shape, with one clade's being more specialized on silica-rich C4 grasses. Interestingly, the inferred timeframe for the genus suggests an earlier origin than previously thought for the genus: about 17-18 million years ago.


Assuntos
Evolução Molecular , Filogenia , Spodoptera/classificação , Spodoptera/genética , Animais , Interações Hospedeiro-Parasita , Filogeografia
3.
Mol Ecol ; 29(18): 3476-3493, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32731311

RESUMO

Dissecting the genetic basis of intraspecific variations in life history traits is essential to understand their evolution, notably for potential biocontrol agents. Such variations are observed in the endoparasitoid Cotesia typhae (Hymenoptera: Braconidae), specialized on the pest Sesamia nonagrioides (Lepidoptera: Noctuidae). Previously, we identified two strains of C. typhae that differed significantly for life history traits on an allopatric host population. To investigate the genetic basis underlying these phenotypic differences, we used a quantitative trait locus (QTL) approach based on restriction site-associated DNA markers. The characteristic of C. typhae reproduction allowed us generating sisters sharing almost the same genetic content, named clonal sibship. Crosses between individuals from the two strains were performed to generate F2 and F8 recombinant CSS. The genotypes of 181 clonal sibships were determined as well as the phenotypes of the corresponding 4,000 females. Informative markers were then used to build a high-quality genetic map. These 465 markers spanned a total length of 1,300 cM and were organized in 10 linkage groups which corresponded to the number of C. typhae chromosomes. Three QTLs were detected for parasitism success and two for offspring number, while none were identified for sex ratio. The QTLs explained, respectively, 27.7% and 24.5% of the phenotypic variation observed. The gene content of the genomic intervals was investigated based on the genome of C. congregata and revealed 67 interesting candidates, as potentially involved in the studied traits, including components of the venom and of the symbiotic virus (bracovirus) shown to be necessary for parasitism success in related wasps.


Assuntos
Polydnaviridae , Vespas , Animais , Feminino , Ligação Genética , Fenótipo , Polydnaviridae/genética , Locos de Características Quantitativas/genética , Reprodução/genética , Vespas/genética
4.
Mol Ecol ; 27(8): 2109-2123, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29603484

RESUMO

The African parasitoid wasp Cotesia sesamiae is a generalist species structured in locally adapted populations showing differences in host range. The recent discovery of Cotesia typhae, a specialist, sister species to C. sesamiae, provides a good framework to study the genetic determinants of parasitoid host range. To investigate the genomic bases of divergence between these populations and species, we used a targeted sequencing approach on 24 samples. We targeted the bracovirus genomic region encoding virulence genes involved in the interaction with the lepidopteran hosts of the wasps. High sequencing coverage was obtained for all samples, allowing the study of genetic variation between wasp populations and species. By combining population genetic estimations, such as nucleotide diversity (π), relative differentiation (FST ) and absolute divergence (dxy ), with branch-site dN/dS measures, we identified six of 98 bracovirus genes showing significant divergence and evidence of positive selection. These genes, belonging to different gene families, are potentially involved in host adaptation and in the specialization process. Fine-scale analyses of genetic variation also revealed mutations and large deletions in certain genes inducing pseudogenization and loss of function. The image emerging from these results is that adaptation mediated by bracovirus genes happens through selection of particularly adaptive alleles and loss of nonadaptive genes. These results highlight the central role of the bracovirus in the molecular interactions between the wasps and their hosts and in the evolutionary processes of specialization.


Assuntos
Interações Hospedeiro-Parasita/genética , Himenópteros/genética , Polydnaviridae/genética , Adaptação Fisiológica/genética , Animais , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Himenópteros/crescimento & desenvolvimento , Himenópteros/virologia , Polydnaviridae/patogenicidade
5.
J Chem Ecol ; 44(11): 1030-1039, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30084041

RESUMO

Foraging parasitoids use chemical signals in host recognition and selection processes. Although, the volatiles play a relevant role in the localization by parasitoids of their hosts feeding on plants, the host identification process for acceptance occurs mainly during contact between the parasitoid and its host where host products related to feeding activities, fecal pellets and oral secretions, play a crucial role. The purpose of this study was to identify the nature of the contact kairomone(s) that mediate the acceptance for oviposition of the parasitoid Cotesia flavipes Cameron (Hymenoptera, Braconidae), which was released in Kenya in 1993 to control the invasive crambid Chilo partellus (Swinhoe). Using host and non-hosts of C. flavipes, we showed that it is mainly the oral secretions of the larvae that harbour the active compound(s) that mediate host acceptance for oviposition by C. flavipes. Using an integration of behavioral observations and biochemical approaches, the active compound of the oral secretions was identified as an α-amylase. Using synthetized α-amylases from Drosophila melanogaster (an insect model for which syntheses of active and inactive α-amylases are available), we observed that the conformation of the enzyme rather than its catalytic site as well as its substrate and its degradation product is responsible for host acceptance and oviposition mediation of C. flavipes females. The results suggest that the α-amylase from oral secretions of the caterpillar host is a good candidate for an evolutionary solution to host acceptance for oviposition in C. flavipes.


Assuntos
Vespas/fisiologia , Zea mays/parasitologia , alfa-Amilases/metabolismo , Animais , Antenas de Artrópodes/efeitos dos fármacos , Antenas de Artrópodes/fisiologia , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Interações Hospedeiro-Parasita , Proteínas de Insetos/análise , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/fisiologia , Oviposição , Espectrometria de Massas em Tandem , Vespas/crescimento & desenvolvimento , Zea mays/metabolismo , alfa-Amilases/farmacologia
6.
J Chem Ecol ; 42(5): 394-403, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27240622

RESUMO

The chemical composition of plant surfaces plays a role in selection of host plants by herbivorous insects. Once the insect reaches the plant, these cues determine host acceptance. Laboratory studies have shown that the stem borer Busseola fusca (Lepidoptera: Noctuidae), an important pest of sorghum and maize in sub-Saharan Africa, is able to differentiate between host and non-host plant species. However, no information is available on the cues used by this insect to seek and accept the host plant. Thus, the role of surface phytochemical stimuli on host selection and oviposition by B. fusca was studied in the laboratory using two host plants, sorghum, Sorghum bicolor, and maize, Zea mays, and one non-host plant, Napier grass, Pennisetum purpureum. The numbers of eggs and egg masses deposited on the three plant species were compared first under no-choice and choice conditions. In both cases, more eggs and egg masses were laid on maize and sorghum than on the non-host. Artificial surrogate stems treated with a water or chloroform surface extract of each plant were then compared with surrogate stems treated with, respectively, water or chloroform as controls, under similar conditions. Surrogate stems treated with plant water extracts did not show an increase in oviposition when compared to controls, indicating that the major compounds in these extracts, i.e., simple sugars and free amino acids, are not significantly responsible for the oviposition preference. By contrast, a chloroform extract of sorghum enhanced oviposition on the surrogate stems compared to the control, while those of maize and Napier grass showed no significant effects. Analysis of the chloroform extract of sorghum showed higher amounts of α-amyrin, ß-amyrin, and n-nonacosane compared to those of maize and Napier grass. A blend of the three chemicals significantly increased oviposition compared to the chloroform-treated control, indicating that these compounds are part of the surface chemical signature of the plant responsible for host recognition and oviposition by B. fusca.


Assuntos
Especificidade de Hospedeiro/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Mariposas/fisiologia , Oviposição/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Bioensaio , Clorofórmio/química , Grão Comestível , Feminino , Herbivoria/efeitos dos fármacos , Extratos Vegetais/análise , Propriedades de Superfície , Água/química
7.
Chaos ; 26(5): 053111, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27249951

RESUMO

Inspired by standard electrophysiological models of microtubules, a discrete nonlinear equation for ionic wave propagation that incorporates a negative nonlinear resistance is presented. The conditions for wave propagation in forbidden band gap are analyzed without and with dissipation. The nonlinear response manifold method is used to determine the supratransmission threshold of the case of study without dissipation. This threshold is found to be similar to the value obtained by analytical methods. With the dissipation, the monitoring of the accumulated energy is used to estimate the infratransmission threshold. It appears that the value of the supratransmission threshold can be lower than the value of the infratransmission threshold. The system is found to amplify significantly the amplitude of the input signal, thus confirming known experimental results. Nevertheless, a proper choice of the parameter of the nonlinear resistance is required for further validation of our results. A possible biological implication of the obtained results is presented.


Assuntos
Eletricidade , Microtúbulos/metabolismo , Modelos Biológicos , Dinâmica não Linear
8.
Mol Phylogenet Evol ; 89: 91-103, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25916187

RESUMO

Seed beetles are a group of specialized chrysomelid beetles, which are mostly associated with plants of the legume family (Fabaceae). In the legume-feeding species, a marked trend of phylogenetic conservatism of host use has been highlighted by several molecular phylogenetics studies. Yet, little is known about the evolutionary patterns of association of species feeding outside the legume family. Here, we investigate the evolution of host use in Spermophagus, a species-rich seed beetle genus that is specialized on two non-legume host-plant groups: morning glories (Convolvulaceae) and mallows (Malvaceae: Malvoideae). Spermophagus species are widespread in the Old World, especially in the Afrotropical, Indomalaya and Palearctic regions. In this study we rely on eight gene regions to provide the first phylogenetic framework for the genus, along with reconstructions of host use evolution, estimates of divergence times and historical biogeography analyses. Like the legume-feeding species, a marked trend toward conservatism of host use is revealed, with one clade specializing on Convolvulaceae and the other on Malvoideae. Comparisons of plants' and insects' estimates of divergence times yield a contrasted pattern: on one hand a quite congruent temporal framework was recovered for morning-glories and their seed-predators; on the other hand the diversification of Spermophagus species associated with mallows apparently lagged far behind the diversification of their hosts. We hypothesize that this delayed colonization of Malvoideae can be accounted for by the respective biogeographic histories of the two groups.


Assuntos
Besouros/fisiologia , Especificidade de Hospedeiro , Ipomoea/parasitologia , Malvaceae/parasitologia , Filogenia , Sementes/parasitologia , Animais , Besouros/classificação , Besouros/genética , Evolução Molecular , Fabaceae/parasitologia , Interações Hospedeiro-Parasita , Filogeografia , Análise de Sequência de DNA , Fatores de Tempo
9.
J Exp Biol ; 217(Pt 19): 3465-73, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274324

RESUMO

The extent of damage to crop plants from pest insects depends on the foraging behaviour of the insect's feeding stage. Little is known, however, about the genetic and molecular bases of foraging behaviour in phytophagous pest insects. The foraging gene (for), a candidate gene encoding a PKG-I, has an evolutionarily conserved function in feeding strategies. Until now, for had never been studied in Lepidoptera, which includes major pest species. The cereal stem borer Sesamia nonagrioides is therefore a relevant species within this order with which to study conservation of and polymorphism in the for gene, and its role in foraging - a behavioural trait that is directly associated with plant injuries. Full sequencing of for cDNA in S. nonagrioides revealed a high degree of conservation with other insect taxa. Activation of PKG by a cGMP analogue increased larval foraging activity, measured by how frequently larvae moved between food patches in an actimeter. We found one non-synonymous allelic variation in a natural population that defined two allelic variants. These variants presented significantly different levels of foraging activity, and the behaviour was positively correlated to gene expression levels. Our results show that for gene function is conserved in this species of Lepidoptera, and describe an original case of a single nucleotide polymorphism associated with foraging behaviour variation in a pest insect. By illustrating how variation in this single gene can predict phenotype, this work opens new perspectives into the evolutionary context of insect adaptation to plants, as well as pest management.


Assuntos
Comportamento Apetitivo/fisiologia , Locomoção , Mariposas/genética , Alelos , Animais , Sequência de Bases , GMP Cíclico/análogos & derivados , GMP Cíclico/fisiologia , Larva/fisiologia , Dados de Sequência Molecular , Mariposas/fisiologia , Fenótipo , Polimorfismo Genético
10.
J Chem Ecol ; 40(8): 923-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25123236

RESUMO

Pheromone-binding proteins (PBPs) are thought to contribute to the specificity of the pheromone detection system through an initial selective binding with pheromone molecules. Here, we report different expression levels of PBP transcripts in the antennae of two populations of the stemborer Sesamia nonagrioides (Lepidoptera: Noctuidae), one collected in Europe and one in sub-Saharan Africa. The three PBP transcripts previously identified in this species were found to be expressed in both male and female antennae. Whereas PBP3 did not show any differential expression, PBP1 and PBP2 appeared to be expressed differently according to the population origin and sex. Simultaneously, we measured and compared the ratio of the three components of the S. nonagrioides pheromone blend (Z11-16:Ac; Z11-16:OH; Z11-16:Ald) in females of the two populations. The ratio of Z11-16:OH and Z11-16:Ald varied significantly according to the population origin of this species. Cluster analyses revealed similar differentiation patterns between PBP1 and PBP2 expression levels and the ratios of Z11-16:OH and Z11-16:Ald. Different female sexual signals may thus correspond to different male reception systems, which are adjusted by the PBP expression levels, thereby ensuring optimal communication within populations.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Atrativos Sexuais/metabolismo , Animais , Feminino , França , Expressão Gênica , Geografia , Quênia , Masculino , Mariposas/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real
11.
Mol Phylogenet Evol ; 65(3): 855-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22939903

RESUMO

Thanks to the recent development of integrative approaches that combine dated phylogenies with models of biogeographic evolution, it is becoming more feasible to assess the roles of dispersal and vicariance in creating complex patterns of geographical distribution. However, the historical biogeography of taxa with good dispersal abilities, like birds or flying insects, still remains largely unknown because of the lack of complete phylogenies accompanied by robust estimates of divergence times. In this study, we investigate the evolution and historical biogeography of the globally distributed pest genus Spodoptera (Lepidoptera: Noctuidae) using complete taxon sampling and an extensive set of analyses. Through the analysis of a combined morphological and molecular dataset, we provide the first robust phylogenetic framework for this widespread and economically important group of moths. Historical biogeography approaches indicate that dispersal events have been the driving force in the biogeographic history of the group. One of the most interesting findings of this study is the probable occurrence of two symmetric long-distance dispersal events between the Afrotropical and the Neotropical region, which appear to have occurred in the late Miocene. Even more remarkably, our dated phylogenies reveal that the diversification of the clade that includes specialist grass feeders has followed closely the expansion of grasslands in the Miocene, similar to the adaptive radiation of specialist grazing mammals during the same period.


Assuntos
Distribuição Animal , Especiação Genética , Filogenia , Spodoptera/genética , Animais , Teorema de Bayes , Geografia , Poaceae , Análise de Sequência de DNA , Spodoptera/classificação
12.
Mol Ecol ; 20(5): 959-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21255170

RESUMO

As a result of an intense host-parasite evolutionary arms race, parasitic wasps frequently display high levels of specialization on very few host species. For instance, in braconid wasps very few generalist species have been described. However, within this family, Cotesia sesamiae is a generalist species that is widespread in sub-Saharan Africa and develops on several lepidopteran hosts. In this study, we tested the hypothesis that C. sesamiae may be a cryptic specialist when examined at the intraspecific level. We sequenced exon 2 of CrV1, a gene of the symbiotic polyDNAvirus that is integrated into the wasp genome and is associated with host immune suppression. We found that CrV1 genotype was more closely associated with the host in which the parasitoid developed than any abiotic environmental factor tested. We also tested a correlation between CrV1 genotype and an infection with Wolbachia bacteria, which are known for their ability to induce reproductive isolation. The Wolbachia bacteria infection polymorphism was also found as a major factor explaining the genetic structure of CrV1, and, in addition, the best model explaining CrV1 genetic structure involved an interaction between Wolbachia infection and host species. We suggest that Wolbachia could act as an agent capable of maintaining advantageous alleles for host specialization in different populations of C. sesamiae. This mechanism could be applicable to other insect models because of the high prevalence of Wolbachia in insects.


Assuntos
Interações Hospedeiro-Patógeno , Polydnaviridae/genética , Vespas/microbiologia , Vespas/virologia , Wolbachia/fisiologia , África Subsaariana , Animais , DNA Viral/genética , Genes Virais , Genoma de Inseto , Genótipo , Interações Hospedeiro-Parasita , Larva/parasitologia , Lepidópteros/parasitologia , Polimorfismo Genético , Análise de Sequência de DNA , Vespas/genética , Wolbachia/genética
13.
Mol Phylogenet Evol ; 59(3): 746-60, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21421066

RESUMO

Though for a long time it was hypothesized that the extraordinary diversity of phytophagous insects was better explained by a synchronous pattern of co-diversification with plants, the results of recent studies have led to question this theory, suggesting that the diversification of insects occurred well after that of their hosts. In this study we address this issue by investigating the timing of diversification of a highly specialized group of seed beetles, which mostly feeds on legume plants from the tribe Indigofereae. To that purpose, a total of 130 specimens were sequenced for six genes and analyzed under a Bayesian phylogenetic framework. Based on the resulting trees we performed several analyses that allowed a better definition of the group boundaries and to investigate the status of several taxa through the use of molecular species delimitation analyses in combination with morphological evidences. In addition the evolution of host plant use was reconstructed and different molecular-dating approaches were carried out in order to assess the ages of several clades of interest. The resulting framework suggests a more ancient than previously thought origin for seed beetles, and a pattern of rapid host plant colonization. These findings call for further similar studies in other highly specialized groups of phytophagous insects.


Assuntos
Besouros/genética , Filogenia , Animais , Besouros/classificação , Plantas , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
14.
J Insect Sci ; 11: 15, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21526933

RESUMO

Plant infestation, stem borer density, parasitism, and parasitoid abundance were assessed during two years in two host plants, Zea mays (L.) (Cyperales: Poaceae) and Sorghum bicolor (L.) (Cyperales: Poaceae), in cultivated habitats. The four major host plants (Cyperus spp., Panicum spp., Pennisetum spp., and Sorghum spp.) found in natural habitats were also assessed, and both the cultivated and natural habitat species occurred in four agroecological zones in Kenya. Across habitats, plant infestation (23.2%), stem borer density (2.2 per plant), and larval parasitism (15.0%) were highest in maize in cultivated habitats. Pupal parasitism was not higher than 4.7% in both habitats, and did not vary with locality during each season or with host plant between each season. Cotesia sesamiae (Cameron) and C. flavipes Cameron (Hymenoptera: Braconidae) were the key parasitoids in cultivated habitats (both species accounted for 76.4% of parasitized stem borers in cereal crops), but not in natural habitats (the two Cotesia species accounted for 14.5% of parasitized stem borers in wild host plants). No single parasitoid species exerted high parasitism rates on stem borer populations in wild host plants. Low stem borer densities across seasons in natural habitats indicate that cereal stem borer pests do not necessarily survive the non-cropping season feeding actively in wild host plants. Although natural habitats provided refuges for some parasitoid species, stem borer parasitism was generally low in wild host plants. Overall, because parasitoids contribute little in reducing cereal stem borer pest populations in cultivated habitats, there is need to further enhance their effectiveness in the field to regulate these pests.


Assuntos
Besouros/fisiologia , Besouros/parasitologia , Ecossistema , Sorghum/parasitologia , Vespas/fisiologia , Zea mays/parasitologia , Animais , Interações Hospedeiro-Parasita , Controle de Insetos/métodos , Quênia , Modelos Logísticos
15.
Int J Insect Sci ; 11: 1179543319843521, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31037037

RESUMO

The stem borer Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is an important pest of maize and sorghum in sub-Saharan Africa. This insect has oligophagous feeding habits, feeding mostly on maize and sorghum with a narrow range of wild Poaceous plant species. We hypothesised that first instar B. fusca larvae, the critical stage for successful establishment on a host plant, can establish and then grow on a particular plant as a result of induction of a complement of digestive enzymes that mediates host acceptance at first instars. A fast semi-quantitative analysis of potentially digestive enzymatic activities present in the first larvae previously fed for 4 days on leaves of host and non-host plants was performed using the API-ZYM kit system able to detect a multiplex of enzyme activities. Regardless of the plant species, the larvae exhibited higher activities of the carbohydrate metabolising enzymes than of aminopeptidases and proteases. In addition, highest activities of carbohydrates degrading enzymes were exhibited by larvae that consumed leaves of the most preferred plant species of B. fusca. Conversely, esterases were only detected in neonate larvae that consumed leaves of the less preferred and non-host plants. No alkaline phosphatase and lipase activities were detected. The significance of these results was discussed in terms of food requirements of first instar larvae when settling on a plant.

16.
Environ Entomol ; 48(3): 573-582, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-30951582

RESUMO

Spatio-temporal dynamics of multi-species pest communities and the interactions between them influence the structure of pest complex that attack crops. In East and Southern Africa, cereal crops, especially maize, is attacked by a complex of lepidopteran stemborer species made up of Busseola fusca (Fuller) and Sesamia calamistis Hampson (Lepidoptera: Noctuidae), and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). There is inadequate information on the extent of single- and multi-species infestations by this pest complex, their current spatio-temporal variations, and the primary abiotic factors that influence these. Furthermore, the recent invasion of the fall armyworm, Spodoptera frugiperda J.E. Smith, in sub-Saharan Africa will likely influence this stemborer community structure. Sampling was conducted in maize fields to record stemborer species and larval numbers from infested plants, in 28 localities found in six agro-ecological zones (AEZs) of Kenya and parts of Tanzania, as well as in one locality in the mid-altitudes where the three stemborer species occurred together. Both single- and multi-species stemborer communities characterized infestation of maize at field and plant levels, but varied in proportions between the AEZs. Infestation patterns and larval densities varied between seasons at mid-locality stemborer communities followed a clustered distribution pattern. Temperature was the most significant abiotic factor influencing the composition of stemborer communities at all spatial scales. Rainfall was significant only at the local scale. Results are discussed in relation to current stemborer community structures in maize fields and what the likely potential implications are, in the light of climate change and the recent establishment of the fall armyworm in Africa.


Assuntos
Mariposas , Zea mays , Animais , Produtos Agrícolas , Quênia , Spodoptera
17.
J Econ Entomol ; 112(1): 396-406, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30376077

RESUMO

Sesamia nonagrioides (Lefèbvre) (Lepidoptera: Noctuidae), is a widespread insect pest in Africa, the Middle East, and Europe. However, its pest status varies across its distribution range. It is a major pest of maize in Europe and of sugarcane in Iran. In Africa, it is a major pest of maize in West Africa but not considered as a pest in East Africa. Recent surveys conducted in 2015 recorded S. nonagrioides to be a major pest of sugarcane in Ethiopia and reported the species for the first time in Botswana, outside its known geographic range. The genetic relationship of these records with the previously recorded population of S. nonagrioides was investigated using the cytochrome oxidase subunit I region of the mitochondrial genome. In total, 113 individuals across the geographic range of the species were analyzed and 63 haplotypes were identified. Phylogenetic analysis separated the populations into two clades with no distinct geographic distribution pattern. The genetic differentiation was also not associated with host plants and geographic distances. Results of the molecular analysis revealed the long-time establishment of S. nonagrioides population in Botswana and identified the newly recorded sugarcane population from Ethiopia as part of the wild host population in the country. The phylogeographic patterns observed among population of S. nonagrioides have probably been shaped by Pleistocene's climatic oscillations and geographic range expansions from different refugia with secondary contact and admixture. Possible reasons for the host-plant expansion by the Ethiopian population are discussed.


Assuntos
Mariposas/genética , Animais , Evolução Biológica , Botsuana , Etiópia , Variação Genética , Filogeografia , Saccharum
18.
Sci Rep ; 9(1): 7039, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065024

RESUMO

Lepidopteran stemborers are among the most damaging agricultural pests worldwide, able to reduce crop yields by up to 40%. Sugarcane is the world's most prolific crop, and several stemborer species from the families Noctuidae, Tortricidae, Crambidae and Pyralidae attack sugarcane. Australia is currently free of the most damaging stemborers, but biosecurity efforts are hampered by the difficulty in morphologically distinguishing stemborer species. Here we assess the utility of DNA barcoding in identifying stemborer pest species. We review the current state of the COI barcode sequence library for sugarcane stemborers, assembling a dataset of 1297 sequences from 64 species. Sequences were from specimens collected and identified in this study, downloaded from BOLD or requested from other authors. We performed species delimitation analyses to assess species diversity and the effectiveness of barcoding in this group. Seven species exhibited <0.03 K2P interspecific diversity, indicating that diagnostic barcoding will work well in most of the studied taxa. We identified 24 instances of identification errors in the online database, which has hampered unambiguous stemborer identification using barcodes. Instances of very high within-species diversity indicate that nuclear markers (e.g. 18S, 28S) and additional morphological data (genitalia dissection of all lineages) are needed to confirm species boundaries.


Assuntos
Código de Barras de DNA Taxonômico , Lepidópteros/genética , Controle de Pragas , Animais , Bases de Dados Genéticas , Lepidópteros/classificação , Mariposas/genética , Filogenia , Quarentena , Saccharum
19.
Insects ; 10(7)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261763

RESUMO

Sources of infestation are the key elements to be considered in the development of habitat management techniques for the control of maize stemborers. Several wild plants, grasses mostly, have been identified that serve as hosts for stemborers and their parasitoids during the off-season when maize is not present in the field. However, their abundance is much lower in wild plants compared to cultivated fields. Thus, the role of wild plants as a reservoir for cereal stemborers and their parasitoids is still controversial, particularly in agro-ecosystems with reduced wild habitat. We studied the occurrence of different maize stemborers and associated parasitoids in maize stem residues and wild grasses during non-cropping seasons as potential carry-over populations to subsequent early season maize plants. Surveys were conducted in the central region of Kenya during long and short dry seasons in maize residues and wild grasses as well as during the two rainy seasons in maize plants at earlier and late whorl stages during the years of 2017 and 2018. Wild habitat had a higher species diversity than maize residues habitat, but maize residues had a higher abundance of maize stemborer species, such as Busseola fusca, Sesamia calamistis, and Chilo partellus, and of associated parasitoid species (i.e., Cotesia flavipes and Cotesia sesamiae) than wild plants. Our surveys, complemented by field parasitoid releases of C. flavipes and C. sesamiae, indicated that maize residues constitute a better refugia reservoir not only of the maize stemborers but also of C. flavipes and C. sesamiae during non-cropping seasons as compared to wild plants and, thus, might constitute in this region the main source of both stemborers and C. flavipes/C. sesamiae carry-over in maize plants during the subsequent cropping season. Thus, systematic destruction of maize residues would not help the biological control of lepidopteran stemborers. This is particularly true in areas with reduced wild habitat.

20.
Genome Biol Evol ; 11(8): 2203-2207, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364706

RESUMO

The maize stalk borer, Busseola fusca, is an important Lepidopteran pest of cereal crops in Central, East, and Southern Africa. Crop losses due to B. fusca feeding activity vary by region, but can result in total crop loss in areas with high levels of infestation. Genomic resources provide critical insight into the biology of pest species and can allow for the development of effective management tools and strategies to mitigate their impact on agriculture. To this end, we sequenced, assembled, and annotated the genome of B. fusca. The total assembled genome size was 492.9 Mb with 19,417 annotated protein-coding genes. Using a comparative approach, we identified a putative expansion in the Chorion gene family, which is involved in the formation of the egg shell structure. Our analysis revealed high repeat content within the B. fusca genome, with LTR sequences comprising the majority of the repetitive sequence. We hope genomic resources will provide a foundation for future work aimed at developing an integrated pest management strategy to reduce B. fusca's impact on food security.


Assuntos
Genoma de Inseto , Genômica/métodos , Proteínas de Insetos/genética , Mariposas/genética , Animais , Produtos Agrícolas , Regulação da Expressão Gênica , Herbivoria , Transcriptoma , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA