Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(4): 587-596, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475891

RESUMO

The phytobiome is composed of plants, their environment, and diverse interacting microscopic and macroscopic organisms, which together influence plant health and productivity. These organisms form complex networks that are established and regulated through nutrient cycling, competition, antagonism, and chemical communication mediated by a diverse array of signaling molecules. Integration of knowledge of signaling mechanisms with that of phytobiome members and their networks will lead to a new understanding of the fate and significance of these signals at the ecosystem level. Such an understanding could lead to new biological, chemical, and breeding strategies to improve crop health and productivity.


Assuntos
Ecossistema , Plantas/microbiologia , Animais , Artrópodes/fisiologia , Eucariotos/fisiologia , Nematoides/fisiologia , Fenômenos Fisiológicos Vegetais , Transdução de Sinais
2.
PLoS Genet ; 16(1): e1008571, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986137

RESUMO

Long-read sequencing facilitates assembly of complex genomic regions. In plants, loci containing nucleotide-binding, leucine-rich repeat (NLR) disease resistance genes are an important example of such regions. NLR genes constitute one of the largest gene families in plants and are often clustered, evolving via duplication, contraction, and transposition. We recently mapped the Xo1 locus for resistance to bacterial blight and bacterial leaf streak, found in the American heirloom rice variety Carolina Gold Select, to a region that in the Nipponbare reference genome is NLR gene-rich. Here, toward identification of the Xo1 gene, we combined Nanopore and Illumina reads and generated a high-quality Carolina Gold Select genome assembly. We identified 529 complete or partial NLR genes and discovered, relative to Nipponbare, an expansion of NLR genes at the Xo1 locus. One of these has high sequence similarity to the cloned, functionally similar Xa1 gene. Both harbor an integrated zfBED domain, and the repeats within each protein are nearly perfect. Across diverse Oryzeae, we identified two sub-clades of NLR genes with these features, varying in the presence of the zfBED domain and the number of repeats. The Carolina Gold Select genome assembly also uncovered at the Xo1 locus a rice blast resistance gene and a gene encoding a polyphenol oxidase (PPO). PPO activity has been used as a marker for blast resistance at the locus in some varieties; however, the Carolina Gold Select sequence revealed a loss-of-function mutation in the PPO gene that breaks this association. Our results demonstrate that whole genome sequencing combining Nanopore and Illumina reads effectively resolves NLR gene loci. Our identification of an Xo1 candidate is an important step toward mechanistic characterization, including the role(s) of the zfBED domain. Finally, the Carolina Gold Select genome assembly will facilitate identification of other useful traits in this historically important variety.


Assuntos
Resistência à Doença , Proteínas NLR/genética , Oryza/genética , Proteínas de Plantas/genética , Anotação de Sequência Molecular , Proteínas NLR/química , Proteínas NLR/metabolismo , Sequenciamento por Nanoporos/métodos , Oryza/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequenciamento Completo do Genoma/métodos , Dedos de Zinco
3.
Plant Dis ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607325

RESUMO

In August 2021, bacterial leaf blight-like symptoms were observed on 14 out of 570 rice genotypes (Oryza sativa) in research field plots of global rice germplasm grown in Arkansas (eXtra Figure S1. A & B). The disease was characterized by spreading lesions on leaves, panicle sterility and reduced yield in highly susceptible, mature rice germplasm. No spread of disease to nearby plants was observed. Isolations were performed at Colorado State University, where soakates from symptomatic leaves were spread onto nutrient agar. After 72 h at 28°C, uniform, distinct, yellow-colored bacterial colonies were observed. To screen for the presence of common rice bacterial pathogens, PCR amplification directly from colonies or from DNA isolated from symptomatic field-collected leaves was performed. Primers specific for Xanthomonas oryzae pvs. oryzae and oryzicola (Lang et al., 2010), Burkholderia glumae (Echeverri-Rico et al., 2021), and Pseudomonas fuscovaginae (Ash et al., 2014) did not amplify indicating these organisms were not present. Sequencing of 16S rRNA gene (Weisburg et al., 1991) amplicons suggested the bacteria belonged to the genera Pantoea and Sphingomonas (NCBI accession no. OP683332 and OP683333, respectively). Amplicons resulting from primers specific to the gyrB gene region of P. ananatis (Kini et al., 2021) were sequenced and the fragment was compared to the P. ananatis PA13 reference genome using a BLAST analysis. One candidate (AR358) showed 100% identity with the P. ananatis gyrB region. Primers specific for Sphingomonas sp. (Bangratz et al., 2020) confirmed the second candidate (AR359) as a Sphingomonas sp. The identity of P. ananatis was confirmed by the Plant Pathogen Confirmatory Diagnostics Laboratory (Beltsville, MD, USA). To determine pathogenicity, leaves from 7-day-old seedlings of rice (Oryza sativa) cultivar Kitaake were scissor-clip inoculated (Kauffman et al., 1973) with four different treatments and compared to control leaves inoculated with sterile water. Treatments for the experiment consisted of bacterial suspensions (108 CFU/ml) of the two candidate organisms, P. ananatis (strain AR358) or Sphingomonas sp. (strain AR359), individually or in a 1:1 ratio of P. ananatis:Sphingomonas sp., or soakate from infected field tissue. Lesions similar to those observed in the field were only detected on leaves inoculated with P. ananatis or infected field tissue soakate at 7-days post-inoculation (eXtra Figure S1. C). Bacteria were recovered from the leaves of the artificially inoculated seedlings from three treatments (P. ananatis, P. ananatis:Sphingomonas sp. and soakate from the infected field tissue) and were determined to be P. ananatis based on colony morphology, amplification of 16s rRNA, and gyrB sequence data. Our results confirm the pathogenicity of P. ananatis to rice and fulfill Koch's postulates. P. ananatis was also recovered from several similarly diseased rice breeding lines at the University of Arkansas System Division of Agriculture Rice Research and Extension Center. We conclude that P. ananatis is the causal pathogen for leaf blight-like symptoms observed in the global rice cultivars grown in Arkansas. P. ananatis was previously reported as a pathogen on rice in several rice growing regions, including China (Yu et al., 2021), India (Reshma et al., 2022), and Africa (Kini et al., 2017), however, this is the first report of P. ananatis as a pathogen of rice in the United States.

4.
Plant Biotechnol J ; 19(1): 51-63, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32594636

RESUMO

Effective and durable disease resistance for bacterial blight (BB) of rice is a continuous challenge due to the evolution and adaptation of the pathogen, Xanthomonas oryzae pv. oryzae (Xoo), on cultivated rice varieties. Fundamental to this pathogens' virulence is transcription activator-like (TAL) effectors that activate transcription of host genes and contribute differently to pathogen virulence, fitness or both. Host plant resistance is predicted to be more durable if directed at strategic virulence factors that impact both pathogen virulence and fitness. We characterized Tal7b, a minor-effect virulence factor that contributes incrementally to pathogen virulence in rice, is a fitness factor to the pathogen and is widely present in geographically diverse strains of Xoo. To identify sources of resistance to this conserved effector, we used a highly virulent strain carrying a plasmid borne copy of Tal7b to screen an indica multi-parent advanced generation inter-cross (MAGIC) population. Of 18 QTL revealed by genome-wide association studies and interval mapping analysis, six were specific to Tal7b (qBB-tal7b). Overall, 150 predicted Tal7b gene targets overlapped with qBB-tal7b QTL. Of these, 21 showed polymorphisms in the predicted effector binding element (EBE) site and 23 lost the EBE sequence altogether. Inoculation and bioinformatics studies suggest that the Tal7b target in one of the Tal7b-specific QTL, qBB-tal7b-8, is a disease susceptibility gene and that the resistance mechanism for this locus may be through loss of susceptibility. Our work demonstrates that minor-effect virulence factors significantly contribute to disease and provide a potential new approach to identify effective disease resistance.


Assuntos
Oryza , Xanthomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/genética , Locos de Características Quantitativas , Fatores de Virulência/genética
5.
New Phytol ; 232(4): 1540-1548, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478160

RESUMO

To more sustainably mitigate the impact of crop diseases on plant health and productivity, there is a need for broader spectrum, long-lasting resistance traits. Defense response (DR) genes, located throughout the genome, participate in cellular and system-wide defense mechanisms to stave off infection by diverse pathogens. This multigenic resistance avoids rapid evolution of a pathogen to overcome host resistance. DR genes reside within resistance-associated quantitative trait loci (QTL), and alleles of DR genes in resistant varieties are more active during pathogen attack relative to susceptible haplotypes. Differential expression of DR genes results from polymorphisms in their regulatory regions, that includes cis-regulatory elements such as transcription factor binding sites as well as features that influence epigenetic structural changes to modulate chromatin accessibility during infection. Many of these elements are found in clusters, known as cis-regulatory modules (CRMs), which are distributed throughout the host genome. Regulatory regions involved in plant-pathogen interactions may also contain pathogen effector binding elements that regulate DR gene expression, and that, when mutated, result in a change in the plants' response. We posit that CRMs and the multiple regulatory elements that comprise them are potential targets for marker-assisted breeding for broad-spectrum, durable disease resistance.


Assuntos
Melhoramento Vegetal , Locos de Características Quantitativas , Resistência à Doença/genética , Haplótipos , Doenças das Plantas/genética , Plantas/genética , Locos de Características Quantitativas/genética
6.
New Phytol ; 230(6): 2129-2147, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33657660

RESUMO

Harnessing plant-associated microbiomes offers an invaluable strategy to help agricultural production become more sustainable while also meeting growing demands for food, feed and fiber. A plethora of interconnected interactions among the host, environment and microbes, occurring both above and below ground, drive recognition, recruitment and colonization of plant-associated microbes, resulting in activation of downstream host responses and functionality. Dissecting these complex interactions by integrating multiomic approaches, high-throughput culturing, and computational and synthetic biology advances is providing deeper understanding of the structure and function of native microbial communities. Such insights are paving the way towards development of microbial products as well as microbiomes engineered with synthetic microbial communities capable of delivering agronomic solutions. While there is a growing market for microbial-based solutions to improve crop productivity, challenges with commercialization of these products remain. The continued translation of plant-associated microbiome knowledge into real-world scenarios will require concerted transdisciplinary research, cross-training of a next generation of scientists, and targeted educational efforts to prime growers and the general public for successful adoption of these innovative technologies.


Assuntos
Agricultura , Microbiota , Plantas
7.
Org Biomol Chem ; 19(13): 2978-2985, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33729254

RESUMO

We report here the synthesis and biological testing of 3'-(phenyl alkynyl) abscisic ABA analogs, a new class of potent ABA antagonists. These ABA analogs incorporate a rigid framework of eight carbon atoms attached at the 3'-carbon atom of ABA that prevents folding of the ABA analog-bound receptor required for ABA signalling. The two-step synthesis is based upon the optimized conversion of natural (S)-ABA to 3'-iodo ABA which can be coupled to phenyl acetylenes using Sonogashira conditions, or to styryl compounds through Suzuki chemistry. The parent 3'-(phenyl alkynyl) ABA analog 7 was obtained in 29% yield, 74% yield based on recovered starting material. In a lentil seed germination assay, compound 7 was found to have more potent activity than other known 3'-substituted ABA antagonists to date. In a structure activity study parasubstituted phenyl alkynyl analogs had comparable activity to the analog 7 while the 3'-styryl ABA 18 was only slightly less active. Analog 7 overcame ABA inhibition of germination and seedling growth in a wide range of mono and dicot plant species, including canola, lentil, soybean, rice, wheat, barley, cannabis and canary seed. 3'-(Phenyl alkynyl) ABA analogs have numerous potential practical agricultural applications including promoting ripening of crops, dormancy breaking of seeds and woody perennials, as well as promoting seed germination, and growth under stress conditions as demonstrated in this report.


Assuntos
Ácido Abscísico/farmacologia , Alcinos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Plantas/efeitos dos fármacos , Ácido Abscísico/síntese química , Ácido Abscísico/química , Alcinos/síntese química , Alcinos/química , Germinação/efeitos dos fármacos , Estrutura Molecular , Reguladores de Crescimento de Plantas/síntese química , Reguladores de Crescimento de Plantas/química , Plantas/metabolismo , Sementes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Phytopathology ; 111(4): 611-616, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32997607

RESUMO

Xanthomonas theicola is the causal agent of bacterial canker on tea plants. There is no complete genome sequence available for X. theicola, a close relative of the species X. translucens and X. hyacinthi, thus limiting basic research for this group of pathogens. Here, we release a high-quality complete genome sequence for the X. theicola type strain, CFBP 4691T. Single-molecule real-time sequencing with a mean coverage of 264× revealed two contigs of 4,744,641 bp (chromosome) and 40,955 bp (plasmid) in size. Genome mining revealed the presence of nonribosomal peptide synthases, two CRISPR systems, the Xps type 2 secretion system, and the Hrp type 3 secretion system. Surprisingly, this strain encodes an additional type 2 secretion system and a novel type 3 secretion system with enigmatic function, hitherto undescribed for xanthomonads. Four type 3 effector genes were found on complete or partial transposons, suggesting a role of transposons in effector gene evolution and spread. This genome sequence fills an important gap to better understand the biology and evolution of the early-branching xanthomonads, also known as clade-1 xanthomonads.


Assuntos
Genoma Bacteriano , Xanthomonas , Genoma Bacteriano/genética , Filogenia , Doenças das Plantas , Chá , Xanthomonas/genética
9.
PLoS Pathog ; 14(6): e1007092, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29864161

RESUMO

Most Xanthomonas species translocate Transcription Activator-Like (TAL) effectors into plant cells where they function like plant transcription factors via a programmable DNA-binding domain. Characterized strains of rice pathogenic X. oryzae pv. oryzae harbor 9-16 different tal effector genes, but the function of only a few of them has been decoded. Using sequencing of entire genomes, we first performed comparative analyses of the complete repertoires of TAL effectors, herein referred to as TALomes, in three Xoo strains forming an African genetic lineage different from Asian Xoo. A phylogenetic analysis of the three TALomes combined with in silico predictions of TAL effector targets showed that African Xoo TALomes are highly conserved, genetically distant from Asian ones, and closely related to TAL effectors from the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Nine clusters of TAL effectors could be identified among the three TALomes, including three showing higher levels of variation in their repeat variable diresidues (RVDs). Detailed analyses of these groups revealed recombination events as a possible source of variation among TAL effector genes. Next, to address contribution to virulence, nine TAL effector genes from the Malian Xoo strain MAI1 and four allelic variants from the Burkinabe Xoo strain BAI3, thus representing most of the TAL effector diversity in African Xoo strains, were expressed in the TAL effector-deficient X. oryzae strain X11-5A for gain-of-function assays. Inoculation of the susceptible rice variety Azucena lead to the discovery of three TAL effectors promoting virulence, including two TAL effectors previously reported to target the susceptibility (S) gene OsSWEET14 and a novel major virulence contributor, TalB. RNA profiling experiments in rice and in silico prediction of EBEs were carried out to identify candidate targets of TalB, revealing OsTFX1, a bZIP transcription factor previously identified as a bacterial blight S gene, and OsERF#123, which encodes a subgroup IXc AP2/ERF transcription factor. Use of designer TAL effectors demonstrated that induction of either gene resulted in greater susceptibility to strain X11-5A. The induction of OsERF#123 by BAI3Δ1, a talB knockout derivative of BAI3, carrying these designer TAL effectors increased virulence of BAI3Δ1, validating OsERF#123 as a new, bacterial blight S gene.


Assuntos
Proteínas de Bactérias/genética , Resistência à Doença/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Xanthomonas/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Oryza/genética , Oryza/crescimento & desenvolvimento , Filogenia , Doenças das Plantas/genética , Fatores de Transcrição/genética
10.
PLoS Biol ; 15(3): e2001793, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28350798

RESUMO

Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes-i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance-into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host-microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/tendências , Microbiota , Plantas/microbiologia , Pesquisa , Abastecimento de Alimentos , Projetos de Pesquisa
11.
Phytopathology ; 110(6): 1124-1131, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32271651

RESUMO

Bacterial leaf streak of corn, caused by Xanthomonas vasicola pv. vasculorum, has been present in South Africa for over 70 years, but is an emerging disease of corn in North and South America. The only scientific information pertaining to this disease on corn came from work done in South Africa, which primarily investigated host range on other African crops, such as sugarcane and banana. As a result, when the disease was first reported in the United States in 2016, there was very limited information on where this pathogen came from, how it infects its host, what plant tissue(s) it is capable of infecting, where initial inoculum comes from at the beginning of each crop season, how the bacterium spreads from plant to plant and long distance, what meteorological variables and agronomic practices favor disease development and spread, how many other plant species X. vasicola pv. vasculorum is capable of infecting or using as alternate hosts, and if the bacterium will be able to persist in all corn growing regions of the United States. There were also no rapid diagnostic assays available which initially hindered prompt identification prior to the development of molecular diagnostic tools. The goal of this synthesis is to review the history of X. vasicola pv. vasculorum and bacterial leaf streak in South Africa and its movement to North and South America, and highlight the recent research that has been done in response to the emergence of this bacterial disease.


Assuntos
Xanthomonas , Doenças das Plantas , África do Sul , América do Sul , Zea mays
12.
Phytopathology ; 110(6): 1161-1173, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32040377

RESUMO

Xanthomonas vasicola pv. vasculorum is an emerging bacterial plant pathogen that causes bacterial leaf streak on corn. First described in South Africa in 1949, reports of this pathogen have greatly increased in the past years in South America and in the United States. The rapid spread of this disease in North and South America may be due to more favorable environmental conditions, susceptible hosts and/or genomic changes that favored the spread. To understand whether genetic mechanisms exist behind the recent spread of X. vasicola pv. vasculorum, we used comparative genomics to identify gene acquisitions in X. vasicola pv. vasculorum genomes from the United States and Argentina. We sequenced 41 genomes of X. vasicola pv. vasculorum and the related sorghum-infecting X. vasicola pv. holcicola and performed comparative analyses against all available X. vasicola genomes. Time-measured phylogenetic analyses showed that X. vasicola pv. vasculorum strains from the United States and Argentina are closely related and arose from two introductions to North and South America. Gene content comparisons identified clusters of genes enriched in corn X. vasicola pv. vasculorum that showed evidence of horizontal transfer including one cluster corresponding to a prophage found in all X. vasicola pv. vasculorum strains from the United States and Argentina as well as in X. vasicola pv. holcicola strains. In this work, we explore the genomes of an emerging phytopathogen population as a first step toward identifying genetic changes associated with the emergence. The acquisitions identified may contain virulence determinants or other factors associated with the spread of X. vasicola pv. vasculorum in North and South America and will be the subject of future work.


Assuntos
Xanthomonas , Argentina , Genômica , Filogenia , Doenças das Plantas , África do Sul , América do Sul , Estados Unidos , Zea mays
13.
Plant Dis ; 104(4): 1011-1012, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32065568

RESUMO

The bacterial plant pathogen Xanthomonas hyacinthi is the causal agent of yellow disease of Hyacinthus and other ornamental plant genera. There is no available complete genome for X. hyacinthi, limiting basic research for this pathogen. Here, we release a high-quality complete genome sequence for the X. hyacinthi type strain, CFBP 1156. Single-molecule real-time (SMRT) sequencing with a mean coverage of 306× revealed two contigs of 4,918,645 and 44,381 bp in size. This was the first characterized plant-disease-causing species of Xanthomonas and this genome provides a resource to better understand the biology of yellow disease of hyacinth.


Assuntos
Xanthomonas , Genoma Bacteriano , Doenças das Plantas
14.
Plant Dis ; 104(1): 13-15, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31660797

RESUMO

Xanthomonas translucens pv. translucens causes bacterial leaf streak and bacterial blight diseases of barley. This pathogen limits barley production globally but remains understudied, with limited genomic resources. To better understand the biology of this X. translucens subgroup, we sequenced the complete genome of the X. translucens pv. translucens strain UPB886.


Assuntos
Genoma Bacteriano , Xanthomonas , Genoma Bacteriano/genética , Genômica , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/genética
15.
PLoS Pathog ; 13(6): e1006442, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28628666

RESUMO

Gram-negative bacterial pathogens of plants and animals employ type III secreted effectors to suppress innate immunity. Most characterized effectors work through modification of host proteins or transcriptional regulators, although a few are known to modify small molecule targets. The Xanthomonas type III secreted avirulence factor AvrRxo1 is a structural homolog of the zeta toxin family of sugar-nucleotide kinases that suppresses bacterial growth. AvrRxo1 was recently reported to phosphorylate the central metabolite and signaling molecule NAD in vitro, suggesting that the effector might enhance bacterial virulence on plants through manipulation of primary metabolic pathways. In this study, we determine that AvrRxo1 phosphorylates NAD in planta, and that its kinase catalytic sites are necessary for its toxic and resistance-triggering phenotypes. A global metabolomics approach was used to independently identify 3'-NADP as the sole detectable product of AvrRxo1 expression in yeast and bacteria, and NAD kinase activity was confirmed in vitro. 3'-NADP accumulated upon transient expression of AvrRxo1 in Nicotiana benthamiana and in rice leaves infected with avrRxo1-expressing strains of X. oryzae. Mutation of the catalytic aspartic acid residue D193 abolished AvrRxo1 kinase activity and several phenotypes of AvrRxo1, including toxicity in yeast, bacteria, and plants, suppression of the flg22-triggered ROS burst, and ability to trigger an R gene-mediated hypersensitive response. A mutation in the Walker A ATP-binding motif abolished the toxicity of AvrRxo1, but did not abolish the 3'-NADP production, virulence enhancement, ROS suppression, or HR-triggering phenotypes of AvrRxo1. These results demonstrate that a type III effector targets the central metabolite and redox carrier NAD in planta, and that this catalytic activity is required for toxicity and suppression of the ROS burst.


Assuntos
Proteínas de Bactérias/metabolismo , NAD/metabolismo , Fosfotransferases/metabolismo , Doenças das Plantas/microbiologia , Xanthomonas/enzimologia , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Oryza/microbiologia , Fosforilação , Fosfotransferases/genética , Nicotiana/microbiologia , Virulência , Xanthomonas/genética
16.
Plant Dis ; 103(11): 2893-2902, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31436473

RESUMO

Uniqprimer, a software pipeline developed in Python, was deployed as a user-friendly internet tool in Rice Galaxy for comparative genome analyses to design primer sets for PCRassays capable of detecting target bacterial taxa. The pipeline was trialed with Dickeya dianthicola, a destructive broad-host-range bacterial pathogen found in most potato-growing regions. Dickeya is a highly variable genus, and some primers available to detect this genus and species exhibit common diagnostic failures. Upon uploading a selection of target and nontarget genomes, six primer sets were rapidly identified with Uniqprimer, of which two were specific and sensitive when tested with D. dianthicola. The remaining four amplified a minority of the nontarget strains tested. The two promising candidate primer sets were trialed with DNA isolated from 116 field samples from across the United States that were previously submitted for testing. D. dianthicola was detected in 41 samples, demonstrating the applicability of our detection primers and suggesting widespread occurrence of D. dianthicola in North America.


Assuntos
Agricultura , Técnicas Bacteriológicas , Primers do DNA , Enterobacteriaceae , Solanum tuberosum , Agricultura/métodos , Técnicas Bacteriológicas/métodos , Primers do DNA/genética , Enterobacteriaceae/genética , América do Norte , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia
17.
Plant Biotechnol J ; 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29406604

RESUMO

Quantitative trait loci (QTL) that confer broad-spectrum resistance (BSR), or resistance that is effective against multiple and diverse plant pathogens, have been elusive targets of crop breeding programmes. Multiparent advanced generation intercross (MAGIC) populations, with their diverse genetic composition and high levels of recombination, are potential resources for the identification of QTL for BSR. In this study, a rice MAGIC population was used to map QTL conferring BSR to two major rice diseases, bacterial leaf streak (BLS) and bacterial blight (BB), caused by Xanthomonas oryzae pathovars (pv.) oryzicola (Xoc) and oryzae (Xoo), respectively. Controlling these diseases is particularly important in sub-Saharan Africa, where no sources of BSR are currently available in deployed varieties. The MAGIC founders and lines were genotyped by sequencing and phenotyped in the greenhouse and field by inoculation with multiple strains of Xoc and Xoo. A combination of genomewide association studies (GWAS) and interval mapping analyses revealed 11 BSR QTL, effective against both diseases, and three pathovar-specific QTL. The most promising BSR QTL (qXO-2-1, qXO-4-1 and qXO-11-2) conferred resistance to more than nine Xoc and Xoo strains. GWAS detected 369 significant SNP markers with distinguishable phenotypic effects, allowing the identification of alleles conferring disease resistance and susceptibility. The BSR and susceptibility QTL will improve our understanding of the mechanisms of both resistance and susceptibility in the long term and will be immediately useful resources for rice breeding programmes.

18.
Plant J ; 87(5): 472-83, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27197779

RESUMO

The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable di-residues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector-triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes.


Assuntos
Oryza/metabolismo , Oryza/microbiologia , Xanthomonas/patogenicidade , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
New Phytol ; 214(3): 1260-1266, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28134995

RESUMO

Phytopathogens have developed elaborate mechanisms to attenuate the defense response of their host plants, including convergent evolution of complex pathways for production of the GA phytohormones, which were actually first isolated from the rice fungal pathogen Gibberella fujikuroi. The rice bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc) has been demonstrated to contain a biosynthetic operon with cyclases capable of producing the universal GA precursor ent-kaurene. Genetic (knock-out) studies indicate that the derived diterpenoid serves as a virulence factor for this rice leaf streak pathogen, serving to reduce the jasmonic acid-mediated defense response. Here the functions of the remaining genes in the Xoc operon are elucidated and the distribution of the operon in X. oryzae is investigated in over 100 isolates. The Xoc operon leads to production of the bioactive GA4 , an additional step beyond production of the penultimate precursor GA9 mediated by the homologous operons recently characterized from rhizobia. Moreover, this GA biosynthetic operon was found to be widespread in Xoc (> 90%), but absent in the other major X. oryzae pathovar. These results indicate selective pressure for production of GA4 in the distinct lifestyle of Xoc, and the importance of GA to both fungal and bacterial pathogens of rice.


Assuntos
Giberelinas/biossíntese , Óperon/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/biossíntese , Folhas de Planta/microbiologia , Xanthomonas/genética , Vias Biossintéticas/genética , Geografia , Giberelinas/química , Xanthomonas/isolamento & purificação
20.
Phytopathology ; 107(5): 519-527, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28112596

RESUMO

Prevalence of Xanthomonas translucens, which causes cereal leaf streak (CLS) in cereal crops and bacterial wilt in forage and turfgrass species, has increased in many regions in recent years. Because the pathogen is seedborne in economically important cereals, it is a concern for international and interstate germplasm exchange and, thus, reliable and robust protocols for its detection in seed are needed. However, historical confusion surrounding the taxonomy within the species has complicated the development of accurate and reliable diagnostic tools for X. translucens. Therefore, we sequenced genomes of 15 X. translucens strains representing six different pathovars and compared them with additional publicly available X. translucens genome sequences to obtain a genome-based phylogeny for robust classification of this species. Our results reveal three main clusters: one consisting of pv. cerealis, one consisting of pvs. undulosa and translucens, and a third consisting of pvs. arrhenatheri, graminis, phlei, and poae. Based on genomic differences, diagnostic loop-mediated isothermal amplification (LAMP) primers were developed that clearly distinguish strains that cause disease on cereals, such as pvs. undulosa, translucens, hordei, and secalis, from strains that cause disease on noncereal hosts, such as pvs. arrhenatheri, cerealis, graminis, phlei, and poae. Additional LAMP assays were developed that selectively amplify strains belonging to pvs. cerealis and poae, distinguishing them from other pathovars. These primers will be instrumental in diagnostics when implementing quarantine regulations to limit further geographic spread of X. translucens pathovars.


Assuntos
Genoma Bacteriano/genética , Genômica , Doenças das Plantas/microbiologia , Xanthomonas/classificação , Primers do DNA/genética , Técnicas de Amplificação de Ácido Nucleico , Filogenia , Sensibilidade e Especificidade , Especificidade da Espécie , Xanthomonas/genética , Xanthomonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA