Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(21): 9610-9623, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377955

RESUMO

A series of pyridine dipyrrolide actinide(IV) complexes, (MesPDPPh)AnCl2(THF) and An(MesPDPPh)2 (An = U, Th, where (MesPDPPh) is the doubly deprotonated form of 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine), have been prepared. Characterization of all four complexes has been performed through a combination of solid- and solution-state methods, including elemental analysis, single crystal X-ray diffraction, and electronic absorption and nuclear magnetic resonance spectroscopies. Collectively, these data confirm the formation of the mono- and bis-ligated species. Time-dependent density functional theory has been performed on all four An(IV) complexes, providing insight into the nature of electronic transitions that are observed in the electronic absorption spectra of these compounds. Room temperature, solution-state luminescence of the actinide complexes is presented. Both Th(IV) derivatives exhibit strong photoluminescence; in contrast, the U(IV) species are nonemissive.

2.
Inorg Chem ; 61(16): 6182-6192, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35420825

RESUMO

The first actinide complexes of the pyridine dipyrrolide (PDP) ligand class, (MesPDPPh)UO2(THF) and (Cl2PhPDPPh)UO2(THF), are reported as the UVI uranyl adducts of the bulky aryl substituted pincers (MesPDPPh)2- and (Cl2PhPDPPh)2- (derived from 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine (H2MesPDPPh, Mes = 2,4,6-trimethylphenyl), and 2,6-bis(5-(2,6-dichlorophenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine (H2Cl2PhPDPPh, Cl2Ph = 2,6-dichlorophenyl), respectively). Following the in situ deprotonation of the proligand with lithium hexamethyldisilazide to generate the corresponding dilithium salts (e.g., Li2ArPDPPh, Ar = Mes of Cl2Ph), salt metathesis with [UO2Cl2(THF)2]2 afforded both compounds in moderate yields. The characterization of each species has been undertaken by a combination of solid- and solution-state methods, including combustion analysis, infrared, electronic absorption, and NMR spectroscopies. In both complexes, single-crystal X-ray diffraction has revealed a distorted octahedral geometry in the solid state, enforced by the bite angle of the rigid meridional (ArPDPPh)2- pincer ligand. The electrochemical analysis of both compounds by cyclic voltammetry in tetrahydrofuran (THF) reveals rich redox profiles, including events assigned as UVI/UV redox couples. A time-dependent density functional theory study has been performed on (MesPDPPh)UO2(THF) and provides insight into the nature of the transitions that comprise its electronic absorption spectrum.

3.
Inorg Chem ; 60(24): 18575-18588, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34431660

RESUMO

Among Earth-abundant catalyst systems, iron-carbene intermediates that perform C-C bond forming reactions such as cyclopropanation of olefins and C-H functionalization via carbene insertion are rare. Detailed descriptions of the possible electronic structures for iron-carbene bonds are imperative to obtain better mechanistic insights and enable rational catalyst design. Here, we report the first square-planar iron-carbene complex (MesPDPPh)Fe(CPh2), where [MesPDPPh]2- is the doubly deprotonated form of [2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine]. The compound was prepared via reaction of the disubstituted diazoalkane N2CPh2 with (MesPDPPh)Fe(thf) and represents a rare example of a structurally characterized, paramagnetic iron-carbene complex. Temperature-dependent magnetic susceptibility measurements and applied-field Mössbauer spectroscopic studies revealed an orbitally near-degenerate S = 1 ground state with large unquenched orbital angular momentum resulting in high magnetic anisotropy. Spin-Hamiltonian analysis indicated that this S = 1 spin system has uniaxial magnetic properties arising from a ground MS = ±1 non-Kramers doublet that is well-separated from the MS = 0 sublevel due to very large axial zero-field splitting (D = -195 cm-1, E/D = 0.02 estimated from magnetic susceptibility data). This remarkable electronic structure gives rise to a very large, positive magnetic hyperfine field of more than +60 T for the 57Fe nucleus along the easy magnetization axis observed by Mössbauer spectroscopy. Computational analysis with complete active space self-consistent field (CASSCF) calculations provides a detailed electronic structure analysis and confirms that (MesPDPPh)Fe(CPh2) exhibits a multiconfigurational ground state. The majority contribution originates from a configuration best described as a singlet carbene coordinated to an intermediate-spin FeII center with a (dxy)2{(dxz),(dz2)}3(dyz)1(dx2-y2)0 configuration featuring near-degenerate dxz and dz2 orbitals.

4.
Inorg Chem ; 59(20): 14716-14730, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32975946

RESUMO

A series of seven bis(pyridinedipyrrolide)zirconium complexes, Zr(R1PDPR2)2, where [R1PDPR2]2- is the doubly deprotonated form of [2,6-bis(5-R1-3-R2-1H-pyrrol-2-yl)pyridine], were prepared and characterized in solution by NMR, UV/vis absorption, and emission spectroscopy and cyclic voltammetry. The molecular structures were determined by single-crystal X-ray crystallography. All complexes exhibit remarkably long emission lifetimes (τ = 190-576 µs) with high quantum efficiencies (ΦPL = 0.10-0.38) upon excitation with visible light in a benzene solution. The substituents on the pyrrolide rings were shown to have significant effects on the photoluminescence and electrochemical properties of these compounds. The R2 substituents (R2 = H, Me, Ph, or C6F5) show only limited effects on the absorption and emission profiles of the complexes but allow systematic tuning of the ground- and excited-state redox potentials over a range of almost 600 mV. The R1 substituents (R1 = H, Me, Ph, or 2,4,6-Me3Ph) influence both the optical and electrochemical properties through electronic effects. Additionally, the R1 substituents have profound consequences for the structural flexibility and overall stability of the compounds. Distortions of the Zr(PDP)2 core from idealized D2d symmetry in the solid state can be traced to the steric profiles of the R1 substituents and correlate with the observed Stokes shifts for each compound. The complex with the smallest ligand system, Zr(HPDPH)2, coordinates two additional solvent molecules in a tetrahydrofuran (THF) solution, which allowed the isolation of photoluminescent, eight-coordinate Zr(HPDPH)2(THF)2. The photoredox catalytic dehalogenation of aryl iodides and aryl chlorides using the most reducing derivative, Zr(MePDPMe)2, highlights the potential of Zr(PDP)2 photosensitizers to promote challenging reductive transformations under mild conditions upon excitation with green light.

5.
Organometallics ; 42(11): 1220-1231, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37324448

RESUMO

The two commercially available zirconium complexes tetrakis(dimethylamido)zirconium, Zr(NMe2)4, and tetrabenzylzirconium, ZrBn4, were investigated for their utility as starting materials in the synthesis of bis(pyridine dipyrrolide)zirconium photosensitizers, Zr(PDP)2. Reaction with one equivalent of the ligand precursor 2,6-bis(5-methyl-3-phenyl-1H-pyrrol-2-yl)pyridine, H2MePDPPh, resulted in the isolation and structural characterization of the complexes (MePDPPh)Zr(NMe2)2thf and (MePDPPh)ZrBn2, which could be converted to the desired photosensitizer Zr(MePDPPh)2 upon addition of a second equivalent of H2MePDPPh. Using the more sterically encumbered ligand precursor 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine, H2MesPDPPh, only ZrBn4 yielded the desired bis-ligand complex Zr(MesPDPPh)2. Careful monitoring of the reaction at different temperatures revealed the importance of the organometallic intermediate (cyclo-MesPDPPh)ZrBn, which was characterized by X-ray diffraction analysis and 1H NMR spectroscopy and shown to contain a cyclometalated MesPDPPh unit. Taking inspiration from the results for zirconium, syntheses for two hafnium photosensitizers, Hf(MePDPPh)2 and Hf(MesPDPPh)2, were established and shown to proceed through similar intermediates starting from tetrabenzylhafnium, HfBn4. Initial studies of the photophysical properties of the photoluminescent hafnium complexes indicate similar optical properties compared to their zirconium analogues.

6.
Chem Commun (Camb) ; 58(85): 11917-11920, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36196958

RESUMO

The photoluminescent eight-coordinate zirconium complex Zr(HPMPH)4 supported by four monoanionic 2-(2'-pyridine)pyrrolide ligands was synthesized. This molecule shows dual emission via fluorescence and phosphorescence with an overall quantum efficiency of 4% at room temperature in solution. The phosphorescence lifetime is dependent on concentration, indicating excimer formation at higher concentrations, and reaches almost 800 µs at high dilution.


Assuntos
Piridinas , Zircônio , Ligantes , Fluorescência
7.
Nat Chem ; 12(4): 345-352, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203439

RESUMO

Advances in chemical control of the photophysical properties of transition-metal complexes are revolutionizing a wide range of technologies, particularly photocatalysis and light-emitting diodes, but they rely heavily on molecules containing precious metals such as ruthenium and iridium. Although the application of earth-abundant 'early' transition metals in photosensitizers is clearly advantageous, a detailed understanding of excited states with ligand-to-metal charge transfer (LMCT) character is paramount to account for their distinct electron configurations. Here we report an air- and moisture-stable, visible light-absorbing Zr(IV) photosensitizer, Zr(MesPDPPh)2, where [MesPDPPh]2- is the doubly deprotonated form of [2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine]. This molecule has an exceptionally long-lived triplet LMCT excited state (τ = 350 µs), featuring highly efficient photoluminescence emission (Ф = 0.45) due to thermally activated delayed fluorescence emanating from the higher-lying singlet configuration with significant LMCT contributions. Zr(MesPDPPh)2 engages in numerous photoredox catalytic processes and triplet energy transfer. Our investigation provides a blueprint for future photosensitizer development featuring early transition metals and excited states with significant LMCT contributions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA