Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792190

RESUMO

As a conformationally restricted amino acid, hydroxy-l-proline is a versatile scaffold for the synthesis of diverse multi-functionalized pyrrolidines for probing the ligand binding sites of biological targets. With the goal to develop new inhibitors of the widely expressed amino acid transporters SLC1A4 and SLC1A5 (also known as ASCT1 and ASCT2), we synthesized and functionally screened synthetic hydroxy-l-proline derivatives using electrophysiological and radiolabeled uptake methods against amino acid transporters from the SLC1, SLC7, and SLC38 solute carrier families. We have discovered a novel class of alkoxy hydroxy-pyrrolidine carboxylic acids (AHPCs) that act as selective high-affinity inhibitors of the SLC1 family neutral amino acid transporters SLC1A4 and SLC1A5. AHPCs were computationally docked into a homology model and assessed with respect to predicted molecular orientation and functional activity. The series of hydroxyproline analogs identified here represent promising new agents to pharmacologically modulate SLC1A4 and SLC1A5 amino acid exchangers which are implicated in numerous pathophysiological processes such as cancer and neurological diseases.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/química , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/química , Humanos , Prolina/química , Prolina/análogos & derivados , Animais , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Células HEK293 , Pirrolidinas/química , Pirrolidinas/farmacologia , Pirrolidinas/síntese química , Descoberta de Drogas , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética
2.
J Neurosci ; 27(11): 2938-42, 2007 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-17360916

RESUMO

Glutamate transporters have a homotrimeric subunit structure with a large central water-filled cavity that extends partially into the plane of the lipid bilayer (Yernool et al., 2004). In addition to uptake of glutamate, the transporters also mediate a chloride conductance that is increased in the presence of substrate. Whether the chloride channel is located in the central pore of the trimer or within the individual subunits has been controversial. We find that coexpression of wild-type neuronal glutamate transporter EAAT3 subunits with subunits mutated at R447, a residue governing substrate selectivity (Bendahan et al., 2000), results in transport activity consistent with two distinct noninteracting populations of transporters, in agreement with previous work suggesting that each subunit operates independently to transport substrate (Awes et al., 2004; Grewer et al., 2005; Koch and Larsson, 2005). In wild-type homotrimeric transporters, the glutamate concentration dependence of the anion conductance and the kinetics of glutamate flux were isolated and measured, and the anion channel activation was fitted to analytical expressions corresponding to (1) a central pore gated by binding to one or more subunits and (2) a channel pore in each subunit. The data indicate that glutamate-binding sites, transport pathways, and chloride channels reside in individual subunits in a trimer and function independently.


Assuntos
Canais de Cloreto/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Subunidades Proteicas/metabolismo , Receptores de Glutamato/metabolismo , Animais , Canais de Cloreto/fisiologia , Transportador 3 de Aminoácido Excitatório/agonistas , Feminino , Ácido Glutâmico/metabolismo , Ácido Glutâmico/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Permeabilidade , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Receptores de Glutamato/genética , Receptores de Glutamato/fisiologia , Transdução de Sinais/genética , Xenopus laevis
3.
PLoS One ; 7(9): e40881, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984394

RESUMO

Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR) supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD) decreased the levels of free carnitines (FC) and increased the acylcarnitine (AC): FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT) 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD.


Assuntos
Carnitina/metabolismo , Glucose/deficiência , Hipocampo/metabolismo , Hipocampo/patologia , Homeostase , Mitocôndrias/patologia , Oxigênio/metabolismo , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Carnitina/farmacologia , Morte Celular/efeitos dos fármacos , Glucose/metabolismo , Hipocampo/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Técnicas In Vitro , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Superóxidos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Sobrevivência de Tecidos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA