RESUMO
Capillary electrophoresis (CE) has emerged as a relevant technique for protein and biopharmaceutical analysis, as it combines high separation efficiency, sensitivity, and versatility. The use of capillary coatings, including successive multiple ionic-polymer layers (SMILs), reduces interactions between analytes and the capillary, further improving the CE performance. Nevertheless, separations done on SMIL coatings rarely surpass 500 × 103 plates/m. To obtain the best out of the CE, it is interesting to have a detailed look at the sources of peak dispersion. Separations of a mix of model proteins were performed on (poly(diallyldimethylammonium chloride)/poly(styrenesulfonate))2.5-coated capillaries at different electrical field strengths, leading to plate height H against migration velocity u plots that enabled a quantitative analysis of each contribution. Using this model, capillary lengths and injected volumes were systematically varied. For the first time, the contribution of sample electrophoretic heterogeneity to the total peak dispersion was deciphered for model proteins and a monoclonal antibody. Dispersion due to electromigration was seen to have an impact on plate heights in the case of triangular peaks of small molecules but not for proteins under the present conditions. UV and mass spectrometry detections were compared on the same capillary, providing valuable information on the impact of the detection type on separation efficiency. Close to 1 million plates/m were reached in the best conditions.
RESUMO
Improving separation efficiency in capillary electrophoresis (CE) requires systematic study of the influence of the electric field (or solute linear velocity) on plate height for a better understanding of the critical parameters controlling peak broadening. Even for poly(diallyldimethylammonium chloride) (PDADMAC)/poly(sodium styrenesulfonate) (PSS) successive multiple ionic-polymer layer (SMIL) coatings, which lead to efficient and reproducible separations of proteins, plate height increases with migration velocity, limiting the use of high electric fields in CE. Solute adsorption onto the capillary wall was generally considered as the main source of peak dispersion, explaining this plate height increase. However, experiments done with Taylor dispersion analysis and CE in the same conditions indicate that other phenomena may come into play. Protein adsorption with slow kinetics and few adsorption sites was established as a source of peak broadening for specific proteins. Surface charge inhomogeneity was also identified as a contribution to plate height due to local electroosmotic fluctuations. A model was proposed and applied to partial PDADMAC/poly(ethylene oxide) capillary coatings as well as PDADMAC/PSS SMIL coatings. Atomic force microscopy with topography and recognition imaging enabled the determination of roughness and charge distribution of the PDADMAC/PSS SMIL surface.
Assuntos
Eletro-Osmose , Eletroforese Capilar , Polietilenos , Eletroforese Capilar/métodos , Adsorção , Polietilenos/química , Proteínas/isolamento & purificação , Proteínas/química , Proteínas/análise , Compostos de Amônio Quaternário/química , Animais , Propriedades de SuperfícieRESUMO
The characterization of the impurities of pharmaceutical monoclonal antibodies (mAbs) is crucial for their function and safety. Capillary zone electrophoresis (CZE) is one of the most efficient tools to separate charge variants of mAbs; however, peak characterization remains difficult, since the hereby used background electrolytes (BGEs) are not compatible with electrospray ionization-mass spectrometry (ESI-MS). Here, a method that allows the separation of intact mAb charge variants is presented using CZE-ESI-MS, combining a cationic capillary coating and an acidic BGE. Therefore, a successive multiple ionic-polymer layer coating was developed based on diethylaminoethyl-dextran-poly(sodium styrene sulfonate). This coating leads to a relatively low reversed electroosmotic flow (EOF) with an absolute mobility slightly higher than that of antibodies, enabling the separation of variants with slightly different mobilities. The potential of the coating is demonstrated using USP mAb003, where it was possible to separate C-terminal lysine variants from the main form, as well as several acidic variants and monoglycosylated mAb forms. The presented CZE-MS method can be applied to separate charge variants of a range of other antibodies such as infliximab, NISTmAB (Reference Material from the National Institute of Standards and Technology), adalimumab, and trastuzumab, demonstrating the general applicability for the separation of proteoforms of mAbs.
RESUMO
Sodium alginate with different molecular weights (55, 170, and 320 kg mol-1) were chemically modified by grafting methacrylic moieties onto the hydroxyl groups of the alginate backbone. The methacrylation was optimized to obtain different degrees of modification. Chemically cross-linked hydrogels were obtained following UV-light irradiation in the presence of a photoinitiator. The swelling behavior and the mechanical properties were observed to depend on both the degree of methacrylation and the alginate molecular weight. Due to the chain entanglement present in high-viscosity sodium alginate, lower degrees of modification were required to tune the hydrogel properties. Moreover, in the presence of Ca2+, secondary cross-linking was introduced by the coordination of the alginate guluronate moieties with the Ca2+ ions. The addition of this secondary cross-linking caused fast volume shrinkage and a reinforcement of the mechanical properties. The secondary cross-linking was reversible, and the hydrogels regained their original shape for at least three cycles. Additionally, the dual cross-linked network can be used to induce adhesion between hydrogels and serve as a building block for self-folding actuators.
Assuntos
Alginatos , Hidrogéis , Hidrogéis/química , Alginatos/químicaRESUMO
Lipid nanoparticles (LNPs) are currently the most advanced non-viral clinically approved messenger ribonucleic acid (mRNA) delivery systems. The ability of a mRNA vaccine to have a therapeutic effect is related to the capacity of LNPs to deliver the nucleic acid intact into cells. The role of LNPs is to protect mRNA, especially from degradation by ribonucleases (RNases) and to allow it to access the cytoplasm of cells where it can be translated into the protein of interest. LNPs enter cells by endocytosis and their size is a critical parameter impacting their cellular internalization. In this work, we studied different formulation process parameters impacting LNPs size. Taylor dispersion analysis (TDA) was used to determine the LNPs size and size distribution and the results were compared with those obtained by Dynamic Light Scattering (DLS). TDA was also used to study both the degradation of mRNA in the presence of RNases and the percentage of mRNA encapsulation within LNPs.
Assuntos
Lipossomos , Nanopartículas , Ribonucleases , RNA Mensageiro , Lipídeos , Vacinas de mRNA , RNA Interferente Pequeno/genéticaRESUMO
JNJ-10450232 (NTM-006), a novel non-opioid, non-nonsteroidal anti-inflammatory drug with structural similarities to acetaminophen, demonstrated anti-pyretic and/or analgesic activities in preclinical models and humans and reduced potential to cause hepatotoxicity in preclinical species. Metabolism and disposition of JNJ-10450232 (NTM-006) following oral administration to rats, dogs, monkeys and humans are reported. Urinary excretion was the major route of elimination based on recovery of 88.6% (rats) and 73.7% (dogs) of oral dose. The compound was extensively metabolized based on low recovery of unchanged drug in excreta from rats (11.3%) and dogs (18.4%). Clearance is driven by O-glucuronidation, amide hydrolysis, O-sulfation and methyl oxidation pathways. The combination of metabolic pathways driving clearance in human is covered in at least one preclinical species despite a few species-dependent pathways. O-Glucuronidation was the major primary metabolic pathway of JNJ-10450232 (NTM-006) in dogs, monkeys and humans, although amide hydrolysis was another major primary metabolic pathway in rats and dogs. A minor bioactivation pathway to quinone-imine is observed only in monkeys and humans. Unchanged drug was the major circulatory component in all species investigated. Except for metabolic pathways unique to the 5-methyl-1H-pyrazole-3-carboxamide moiety, metabolism and disposition of JNJ-10450232 (NTM-006) are similar to acetaminophen across species.
RESUMO
Polychlorinated biphenyls (PCBs) were broadly applied worldwide as electrical insulators in transformers and power capacitors, due to their high dielectric constant and non-flammability. They were often added to mineral oils (MOs) and used as dielectric fluids, which are nowadays classified as hazardous waste. Indeed, the Stockholm Convention aims to eliminate the use of equipment with PCB content greater than 0.005 wt-% (=50 ppm) by 2025. Accurate identification and quantification of small traces of PCBs contained in MO thus represent a great analytical challenge. To achieve this goal, a simple, cost-effective and fast chromatographic process was developed to separate PCBs from MO, allowing to obtain reliable data to determine the concentration of PCBs, reduced to 2-3 ppm. Experimental and analytical methods, such as thin layer chromatography, column chromatography as well as gas chromatography coupled with mass spectroscopy, were applied to acquire a high level of qualitative and quantitative determination of PCBs in transformer MOs.
Assuntos
Bifenilos Policlorados , Bifenilos Policlorados/química , Óleo Mineral , Fontes de Energia ElétricaRESUMO
Messenger RNA vaccines have come into the spotlight as a promising and adaptive alternative to conventional vaccine approaches. The efficacy of mRNA vaccines relies on the ability of mRNA to reach the cytoplasm of cells, where it can be translated into proteins of interest, allowing it to trigger the immune response. However, unprotected mRNA is unstable and susceptible to degradation by exo- and endonucleases, and its negative charges are electrostatically repulsed by the anionic cell membranes. Therefore, mRNA needs a delivery system that protects the nucleic acid from degradation and allows it to enter into the cells. Lipid nanoparticles (LNPs) represent a nonviral leading vector for mRNA delivery. Physicochemical parameters of LNPs, including their size and their charge, directly impact their in vivo behavior and, therefore, their cellular internalization. In this work, Taylor dispersion analysis (TDA) was used as a new methodology for the characterization of the size and polydispersity of LNPs, and capillary electrophoresis (CE) was used for the determination of LNP global charge. The results obtained were compared with those obtained by dynamic light scattering (DLS) and laser Doppler electrophoresis (LDE).
Assuntos
Nanopartículas , Vacinas de mRNA , Lipossomos , Nanopartículas/química , RNA Mensageiro/química , RNA Mensageiro/genética , Vacinas SintéticasRESUMO
The generation of air microbubbles in microfluidic systems or in capillaries could be of great interest for transportation (single cell analysis, organite transportation) or for liquid compartmentation. The physicochemical characterization of air bubbles and a better understanding of the process leading to bubble generation during electrophoresis is also interesting in a theoretical point of view. In this work, the generation of microbubbles on hydrophobic Glaco™ coated capillaries has been studied in water-based electrolyte. Air bubbles were generated at the detection window and the required experimental parameters for microbubbles generation have been identified. Generated bubbles migrated against the electroosmotic flow, as would do strongly negatively charged solutes, under constant electric field. They have been characterized in terms of dimensions, electrophoretic mobility, and apparent charge.
Assuntos
Capilares , Microbolhas , ÁguaRESUMO
Vaccine adjuvants are immunostimulatory substances used to improve and modulate the immune response induced by antigens. A better understanding of the antigen-adjuvant interactions is necessary to develop future effective vaccine. In this study, Taylor dispersion analysis (TDA) was successfully implemented to characterize the interactions between a polymeric adjuvant (poly(acrylic acid), SPA09) and a vaccine antigen in development for the treatment of Staphylococcus aureus. TDA allowed one to rapidly determine both (i) the size of the antigen-adjuvant complexes under physiological conditions and (ii) the percentage of free antigen in the adjuvant/antigen mixture at equilibrium and finally get the interaction parameters (stoichiometry and binding constant). The complex sizes obtained by TDA were compared to the results obtained by transmission electron microscopy, and the binding parameters were compared to results previously obtained by frontal analysis continuous capillary electrophoresis.
Assuntos
Adjuvantes Imunológicos , Antígenos , Vacinas , Eletroforese CapilarRESUMO
BACKGROUND: Atabecestat is an orally administered BACE inhibitor developed to treat Alzheimer's disease. Elevations in hepatic enzymes were detected in a number of in trial patients, which resulted in termination of the drug development programme. Immunohistochemical characterization of liver tissue from an index case of atabecestat-mediated liver injury revealed an infiltration of T-lymphocytes in areas of hepatocellular damage. This coupled with the fact that liver injury had a delayed onset suggests that the adaptive immune system may be involved in the pathogenesis. The aim of this study was to generate and characterize atabecestat(metabolite)-responsive T-cell clones from patients with liver injury. METHODS: Peripheral blood mononuclear cells were cultured with atabecestat and its metabolites (diaminothiazine [DIAT], N-acetyl DIAT & epoxide) and cloning was attempted in a number of patients. Atabecestat(metabolite)-responsive clones were analysed in terms of T-cell phenotype, function, pathways of T-cell activation and cross-reactivity with structurally related compounds. RESULTS: CD4+ T-cell clones activated with the DIAT metabolite were detected in 5 out of 8 patients (up to 4.5% cloning efficiency). Lower numbers of CD4+ and CD8+ clones displayed reactivity against atabecestat. Clones proliferated and secreted IFN-γ, IL-13 and cytolytic molecules following atabecestat or DIAT stimulation. Certain atabecestat and DIAT-responsive clones cross-reacted with N-acetyl DIAT; however, no cross-reactivity was observed between atabecestat and DIAT. CD4+ clones were activated through a direct, reversible compound-HLA class II interaction with no requirement for protein processing. CONCLUSION: The detection of atabecestat metabolite-responsive T-cell clones activated via a pharmacological interactions pathway in patients with liver injury is indicative of an immune-based mechanism for the observed hepatic enzyme elevations.
Assuntos
Preparações Farmacêuticas , Linfócitos T , Linfócitos T CD4-Positivos , Células Clonais , Humanos , Leucócitos Mononucleares , Fígado , Ativação Linfocitária , Piridinas , TiazinasRESUMO
The search for novel pancreatic lipase (PL) inhibitors has gained increasing attention in recent years. For the first time, a dual detection capillary electrophoresis (CE)-based homogeneous lipase assay was developed employing both the offline and online reaction modes. The hydrolysis of 4-nitrophenyl butyrate (4-NPB) catalyzed by PL into 4-nitrophenol and butyrate was monitored by spectrophotometric and conductimetric detection, respectively. The assays presented several advantages such as economy in consumption (few tens of nanoliters for online assays to few tens of microliters for offline assays), no modification of lipase, rapidity (<10 min) and versatility. Tris/MOPS (10 mM, pH 6.6) was used as the background electrolyte and the incubation buffer for enzymatic reactions. We confirmed that in the conditions of the study (small substrate 4-NPB, 37 °C, pH 6.6), the PL was active even in the absence of dipalmitoylphosphatidylcholine (DPPC) vesicles, generally used to mimic the lipid-water interface. This was confirmed by the maximum velocity (Vmax) and the Michaelis-Menten constant (Km) values that were the same order of magnitude in the absence and presence of DPPC. The developed method was used to screen crude aqueous plant extracts and purified compounds. We were able to identify the promising PL inhibition of hawthorn leaf herbal infusions at 1 mg mL-1 (37%) and PL activation by fresh and dry hawthorn flowers (â¼24%). Additionally, two triterpenoids purified from extracts of oakwood were identified for the first time as potent PL inhibitors demonstrating 51 and 58% inhibition at 1 mg mL-1, respectively.
Assuntos
Eletroforese Capilar , Lipase , Hidrólise , Cinética , Lipase/metabolismo , EspectrofotometriaRESUMO
This article describes in vivo biotransformation and disposition of erdafitinib following single oral dose of 3H-erdafitinib and 14C-erdafitinib to intact and bile duct-cannulated (BC) rats (4 mg/kg), 3H-erdafitinib to intact dogs (0.25 mg/kg), and 14C-erdafitinib to humans (12 mg; NCT02692677). Peak plasma concentrations of total radioactivity were achieved rapidly (Tmax: animals, 1 h; humans, 2-3 h). Recovery of drug-derived radioactivity was significantly slower in humans (87%, 384 h) versus animals (rats: 91-98%, 48 h; dogs: 81%, 72 h). Faeces was the primary route of elimination in intact rats (95%), dogs (76%), and humans (69%); and bile in BC rats (48%). Renal elimination of radioactivity was relatively low in animals (2-12%) versus humans (19%). Unchanged erdafitinib was major component in human excreta (faeces, 17%; urine, 11%) relative to animals. M6 (O-desmethyl) was the major faecal metabolite in humans (24%) and rats (intact, 46%; BC, 11%), and M2 (O-glucuronide of M6) was the prevalent biliary metabolite in rats (14%). In dogs, besides M6, majority of radioactive dose in faeces was composed of multiple minor metabolites. In humans, unchanged erdafitinib was the major circulating entity. O-demethylation of erdafitinib was the major metabolic pathway in humans and animals.
Assuntos
Inibidores de Proteínas Quinases/metabolismo , Pirazóis/metabolismo , Quinoxalinas/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Administração Oral , Animais , Área Sob a Curva , Bile/metabolismo , Biotransformação , Cães , Fezes , Glucuronídeos/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Especificidade da EspécieRESUMO
The improvement of separation efficiency for protein analysis in capillary electrophoresis (CE) is a challenging topic in which protein adsorption onto the capillary wall plays a crucial role. In this work, a simple method allowing the quantification of the adsorption of proteins onto the coated or untreated inner surface of the fused silica capillary was developed based on the determination of the retention factor by measuring separation efficiency of individual proteins at different separation voltages (i.e., different linear velocities). This approach was applied to the quantification of the residual adsorption of four test proteins on five-layer polyelectrolyte coatings and bare fused silica capillary. It allows to get a fair ranking of the coating performances toward protein adsorption, whatever their apparent electrophoretic mobilities (migration times) are. Due to the existence of (even low) residual adsorption, the electrophoretic operating conditions (electric field, capillary length, and internal diameter) can be optimized to improve the separation performances resulting in experimental separation efficiency up to â¼600â¯000 plates.m-1 in conditions compatible with MS coupling. This approach represents a crucial step in the course to get antifouling coatings for protein separation in CE. It can be used for the evaluation and ranking of virtually any coating (neutral or charged) in CE.
Assuntos
Eletroforese Capilar/métodos , Proteínas/química , Proteínas/isolamento & purificação , Adsorção , Condutividade Elétrica , Dióxido de Silício/químicaRESUMO
Hemoglobin (Hb) constitutes an important protein in clinical diagnostics-both in humans and animals. Among the high number of sequence variants, some can cause severe diseases. Moreover, chemical modifications such as glycation and carbamylation serve as important biomarkers for conditions such as diabetes and kidney diseases. In clinical routine analysis of glycated Hb, sequence variants or other Hb proteoforms can cause interference, resulting in wrong quantification results. We present a versatile and flexible capillary zone electrophoresis-mass spectrometry screening method for Hb proteoforms including sequence variants and modified species extracted from dried blood spot (DBS) samples with virtually no sample preparation. High separation power was achieved by application of a 5-layers successive multiple ionic polymer layers-coated capillary, enabling separation of positional isomers of glycated α- and ß-chains on the intact level. Quantification of glycated Hb was in good correlation with the results obtained in a clinical routine method. Identification and characterization of known and unknown proteoforms was performed by fragmentation of intact precursor ions. N-Terminal and lysine glycation could be identified on the α- and ß-chain, respectively. The versatility of the method was demonstrated by application to dog and cat DBS samples. We discovered a putative new sequence variant of the ß-chain in dog (T38 â A). The presented method enables separation, characterization, and quantification of intact proteoforms, including positional isomers of glycated species in a single run. Combined with the simple sample preparation, our method represents a valuable tool to be used for deeper characterization of clinical and veterinary samples.
Assuntos
Eletroforese Capilar/veterinária , Hemoglobinas/química , Espectrometria de Massas em Tandem/veterinária , Animais , Eletroforese Capilar/métodos , Humanos , Espectrometria de Massas em Tandem/métodosRESUMO
Vaccine adjuvants are used to enhance the immune response induced by antigens that have insufficient immunostimulatory capabilities. The present work aims at developing a frontal analysis continuous capillary electrophoresis (FACCE) methodology for the study of antigen-adjuvant interactions in vaccine products. After method optimization using three cationic model proteins, namely lysozyme, cytochrome c, and ribonuclease A, FACCE was successfully implemented to quantify the free antigen and thus to determine the interaction parameters (stoichiometry and binding constant) between an anionic polymeric adjuvant (polyacrylic acid, SPA09) and a cationic vaccine antigen in development for the treatment for Staphylococcus aureus. The influence of the ionic strength of the medium on the interactions was investigated. A strong dependence of the binding parameters with the ionic strength was observed. The concentration of the polymeric adjuvant was also found to significantly modify the ionic strength of the formulation, the extent of which could be estimated and corrected.
Assuntos
Vacinas , Adjuvantes Imunológicos , Antígenos , Eletroforese Capilar , MuramidaseRESUMO
The aim of this study is to investigate the relationship between the structural, molecular, and particulate properties of alginic acid and its functional characteristics in direct compression (tabletability, compressibility, elasticity, deformation mechanism, and disintegration ability). Therefore, accurate characterization of two different batches of alginic acid was executed (X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electronic microscopy, 1H nuclear magnetic resonance, size exclusion chromatography - multi angle light scattering, viscosimetry, carboxylic acid titration, powder flowability, true density, laser granulometry). Results showed that molecular weight seems to affect tablet properties and that the alginic acid with the lowest molecular weight provides the hardest tablets with the lowest elastic recovery. Furthermore, these results show the potential interest of exploiting alginic acid as filler excipient in tablet formulation. Finally, disintegration properties of tested materials were found to be close to that of commercial superdisintegrants (Glycolys® and Kollidon Cl®) but not correlated to their swelling force. It can be concluded, for the first time, that the determination of alginic acid molecular weight seems key for applications in direct compression and in particular for obtaining tablets with reproducible strength.
Assuntos
Ácido Algínico/análise , Ácido Algínico/química , Avaliação Pré-Clínica de Medicamentos/métodos , Elasticidade , Excipientes/química , Dureza , Fenômenos Mecânicos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Relação Estrutura-Atividade , Comprimidos , Difração de Raios X/métodosRESUMO
Hawthorn (Crataegus) is used for its cardiotonic, hypotensive, vasodilative, sedative, antiatherosclerotic, and antihyperlipidemic properties. One of the main goals of this work was to find a well-defined optimized extraction protocol usable by each of us that would lead to repeatable, controlled, and quantified daily uptake of active components from hawthorn at a drinkable temperature (below 60 °C). A thorough investigation of the extraction mode in water (infusion, maceration, percolation, ultrasounds, microwaves) on the yield of extraction and the amount of phenolic compounds, flavonoids, and proanthocyanidin oligomers as well as on the Ultra High Performance Liquid Chromatography (UHPLC) profiles of the extracted compounds was carried out. High-resolution Fourier transform ion cyclotron resonance mass spectrometry was also implemented to discriminate the different samples and conditions of extraction. The quantitative and qualitative aspects of the extraction as well as the kinetics of extraction were studied, not only according to the part (flowers or leaves), the state (fresh or dried), and the granulometry of the dry plant, but also the stirring speed, the temperature, the extraction time, the volume of the container (cup, mug or bowl) and the use of infusion bags.
Assuntos
Crataegus/química , Flavonoides/isolamento & purificação , Proantocianidinas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Flores/química , Extratos Vegetais/química , Folhas de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/análiseRESUMO
Taylor dispersion analysis (TDA) is an absolute method (no calibration needed) for the determination of the molecular diffusion coefficient (D) based on the band broadening of a solute in a laminar flow. TDA is virtually applicable to any solute with size ranging from angstrom to sub-micrometer. The higher sizing limit is restricted by the occurrence of possibly two regimes: convective and hydrodynamic chromatography (HDC) regimes, which have different physical origins that should not be confused. This work aims at clearly defining the experimental conditions for which these two regimes can play a role, alone or concomitantly. It also calculates the relative error on D due to the HDC regime according to the solute to capillary size ratio. It is demonstrated in this work that HDC does not significantly affect the TDA measurement as long as the hydrodynamic radius of the solute is lower than 0.0051 times the capillary radius. Experimental illustrations of the occurrence of the two regimes are given taking polystyrene nanoparticles as model solutes. Finally, application of TDA to the sizing of large real-life solutes is proposed, taking cubosomes as new drug nanocarriers of potential interest for drug delivery purposes.
Assuntos
Hidrodinâmica , Nanopartículas/química , Fosfatidilgliceróis/química , Poloxâmero/química , Cromatografia , Difusão , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
AIMS: Canagliflozin is a recently approved drug for use in the treatment of type 2 diabetes. The potential for canagliflozin to cause clinical drug-drug interactions (DDIs) was assessed. METHODS: DDI potential of canagliflozin was investigated using in vitro test systems containing drug metabolizing enzymes or transporters. Basic predictive approaches were applied to determine potential interactions in vivo. A physiologically-based pharmacokinetic (PBPK) model was developed and clinical DDI simulations were performed to determine the likelihood of cytochrome P450 (CYP) inhibition by canagliflozin. RESULTS: Canagliflozin was primarily metabolized by uridine 5'-diphospho-glucuronosyltransferase 1A9 and 2B4 enzymes. Canagliflozin was a substrate of efflux transporters (P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein-2) but was not a substrate of uptake transporters (organic anion transporter polypeptide isoforms OATP1B1, OATP1B3, organic anion transporters OAT1 and OAT3, and organic cationic transporters OCT1, and OCT2). In inhibition assays, canagliflozin was shown to be a weak in vitro inhibitor (IC50 ) of CYP3A4 (27 µmol l -1 , standard error [SE] 4.9), CYP2C9 (80 µmol l -1 , SE 8.1), CYP2B6 (16 µmol l-1 , SE 2.1), CYP2C8 (75 µmol l -1 , SE 6.4), P-glycoprotein (19.3 µmol l -1 , SE 7.2), and multidrug resistance-associated protein-2 (21.5 µmol l -1 , SE 3.1). Basic models recommended in DDI guidelines (US Food & Drug Administration and European Medicines Agency) predicted moderate to low likelihood of interaction for these CYPs and efflux transporters. PBPK DDI simulations of canagliflozin with CYP probe substrates (simvastatin, S-warfarin, bupropion, repaglinide) did not show relevant interaction in humans since mean areas under the concentration-time curve and maximum plasma concentration ratios for probe substrates with and without canagliflozin and its 95% CIs were within 0.80-1.25. CONCLUSIONS: In vitro DDI followed by a predictive or PBPK approach was applied to determine DDI potential of canagliflozin. Overall, canagliflozin is neither a perpetrator nor a victim of clinically important interactions.