RESUMO
Preconditioning, postconditioning, and remote conditioning of the myocardium enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and the potential to provide novel therapeutic paradigms for cardioprotection. While many signaling pathways leading to endogenous cardioprotection have been elucidated in experimental studies over the past 30 years, no cardioprotective drug is on the market yet for that indication. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic preclinical evaluation of promising cardioprotective therapies prior to their clinical evaluation, since ischemic heart disease in humans is a complex disorder caused by or associated with cardiovascular risk factors and comorbidities. These risk factors and comorbidities induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury and responses to cardioprotective interventions. Moreover, some of the medications used to treat these comorbidities may impact on cardioprotection by again modifying cellular signaling pathways. The aim of this article is to review the recent evidence that cardiovascular risk factors as well as comorbidities and their medications may modify the response to cardioprotective interventions. We emphasize the critical need for taking into account the presence of cardiovascular risk factors as well as comorbidities and their concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple comorbidities. SIGNIFICANCE STATEMENT: Ischemic heart disease is a major cause of mortality; however, there are still no cardioprotective drugs on the market. Most studies on cardioprotection have been undertaken in animal models of ischemia/reperfusion in the absence of comorbidities; however, ischemic heart disease develops with other systemic disorders (e.g., hypertension, hyperlipidemia, diabetes, atherosclerosis). Here we focus on the preclinical and clinical evidence showing how these comorbidities and their routine medications affect ischemia/reperfusion injury and interfere with cardioprotective strategies.
Assuntos
Pós-Condicionamento Isquêmico , Precondicionamento Isquêmico Miocárdico , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Animais , Humanos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/prevenção & controle , Fatores de Risco , Fatores de Risco de Doenças Cardíacas , IsquemiaRESUMO
PURPOSE: Coronary artery bypass grafting (CABG) on cardiopulmonary bypass (CPB) is associated with myocardial ischemia-reperfusion injury (IRI), which may limit the benefit of the surgery. Both experimental and clinical studies suggest that Intralipid, a lipid emulsion commonly used for parenteral nutrition, can limit myocardial IRI. We therefore aimed to investigate whether Intralipid administered at reperfusion can reduce myocardial IRI in patients undergoing CABG on CPB. METHODS: We conducted a randomized, double-blind, pilot trial in which 29 adult patients scheduled for CABG were randomly assigned (on a 1:1 basis) to receive either 1.5 ml/kg Intralipid 20% or Ringer's Lactate 3 min before aortic cross unclamping. The primary endpoint was the 72-h area under the curve (AUC) for troponin I. RESULTS: Of the 29 patients randomized, 26 were included in the study (two withdrew consent and one was excluded before surgery). The 72-h AUC for troponin I did not significantly differ between the control and Intralipid group (546437 ± 205518 versus 487561 ± 115724 arbitrary units, respectively; P = 0.804). Other outcomes (including 72-h AUC for CK-MB, C-reactive protein, need for defibrillation, time to extubation, length of ICU and hospital stay, and serious adverse events) were similar between the two groups. CONCLUSION: In patients undergoing CABG on CPB, Intralipid did not limit myocardial IRI compared to placebo. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02807727 (registration date: 16 June 2016).
RESUMO
PURPOSE: Coronavirus disease 19 (COVID-19) has, to date, been diagnosed in over 130 million persons worldwide and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several variants of concern have emerged including those in the United Kingdom, South Africa, and Brazil. SARS-CoV-2 can cause a dysregulated inflammatory response known as a cytokine storm, which can progress rapidly to acute respiratory distress syndrome (ARDS), multi-organ failure, and death. Suppressing these cytokine elevations may be key to improving outcomes. Remote ischemic conditioning (RIC) is a simple, non-invasive procedure whereby a blood pressure cuff is inflated and deflated on the upper arm for several cycles. "RIC in COVID-19" is a pilot, multi-center, randomized clinical trial, designed to ascertain whether RIC suppresses inflammatory cytokine production. METHODS: A minimum of 55 adult patients with diagnosed COVID-19, but not of critical status, will be enrolled from centers in the United Kingdom, Brazil, and South Africa. RIC will be administered daily for up to 15 days. The primary outcome is the level of inflammatory cytokines that are involved in the cytokine storm that can occur following SARS-CoV-2 infection. The secondary endpoint is the time between admission and until intensive care admission or death. The in vitro cytotoxicity of patient blood will also be assessed using primary human cardiac endothelial cells. CONCLUSIONS: The results of this pilot study will provide initial evidence on the ability of RIC to suppress the production of inflammatory cytokines in the setting of COVID-19. TRIAL REGISTRATION: NCT04699227, registered January 7th, 2021.
Assuntos
COVID-19 , Adulto , Cuidados Críticos , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas , Células Endoteliais , Humanos , Projetos Piloto , SARS-CoV-2 , Resultado do TratamentoRESUMO
PURPOSE: Patients hospitalized with COVID-19 may develop a hyperinflammatory, dysregulated cytokine "storm" that rapidly progresses to acute respiratory distress syndrome, multiple organ dysfunction, and even death. Remote ischaemic conditioning (RIC) has elicited anti-inflammatory and cytoprotective benefits by reducing cytokines following sepsis in animal studies. Therefore, we investigated whether RIC would mitigate the inflammatory cytokine cascade induced by COVID-19. METHODS: We conducted a prospective, multicentre, randomized, sham-controlled, single-blind trial in Brazil and South Africa. Non-critically ill adult patients with COVID-19 pneumonia were randomly allocated (1:1) to receive either RIC (intermittent ischaemia/reperfusion applied through four 5-min cycles of inflation (20 mmHg above systolic blood pressure) and deflation of an automated blood-pressure cuff) or sham for approximately 15 days. Serum was collected following RIC/sham administration and analyzed for inflammatory cytokines using flow cytometry. The endpoint was the change in serum cytokine concentrations. Participants were followed for 30 days. RESULTS: Eighty randomized participants (40 RIC and 40 sham) completed the trial. Baseline characteristics according to trial intervention were overall balanced. Despite downward trajectories of all cytokines across hospitalization, we observed no substantial changes in cytokine concentrations after successive days of RIC. Time to clinical improvement was similar in both groups (HR 1.66; 95% CI, 0.938-2.948, p 0.08). Overall RIC did not demonstrate a significant impact on the composite outcome of all-cause death or clinical deterioration (HR 1.19; 95% CI, 0.616-2.295, p = 0.61). CONCLUSION: RIC did not reduce the hypercytokinaemia induced by COVID-19 or prevent clinical deterioration to critical care. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04699227.
RESUMO
Doxorubicin (DOX) is an anthracycline antibiotic frequently used against a wide range of cancers, including breast cancer. Although the drug is effective as a treatment against cancer, many patients develop heart failure (HF) months to years following their last treatment with DOX. The challenge in preventing DOX-induced cardiotoxicity is that symptoms present after damage has already occurred in the myocardium. Therefore, early biomarkers to assess DOX-induced cardiotoxicity are urgently needed. A better understanding of the mechanisms involved in the toxicity is important as this may facilitate the development of novel early biomarkers or therapeutic approaches. In this review, we discuss the role of high-density lipoprotein (HDL) particles and its components as possible key players in the early development of DOX-induced cardiotoxicity. HDL particles exist in different subclasses which vary in composition and biological functionality. Multiple cardiovascular risk factors are associated with a change in HDL subclasses, resulting in modifications of their composition and physiological functions. There is growing evidence in the literature suggesting that cancer affects HDL subclasses and that healthy HDL particles enriched with sphingosine-1-phosphate (S1P) and apolipoprotein A1 (ApoA1) protect against DOX-induced cardiotoxicity. Here, we therefore discuss associations and relationships between HDL, DOX and cancer and discuss whether assessing HDL subclass/composition/function may be considered as a possible early biomarker to detect DOX-induced cardiotoxicity.
Assuntos
Neoplasias da Mama , Cardiotoxicidade , Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Doxorrubicina/efeitos adversos , Feminino , Humanos , Lipoproteínas HDL , MiocárdioRESUMO
Acute myocardial infarction (AMI) and the heart failure (HF) which may follow are among the leading causes of death and disability worldwide. As such, new therapeutic interventions are still needed to protect the heart against acute ischemia/reperfusion injury to reduce myocardial infarct size and prevent the onset of HF in patients presenting with AMI. However, the clinical translation of cardioprotective interventions that have proven to be beneficial in preclinical animal studies, has been challenging. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic in vivo preclinical assessment of the efficacy of promising cardioprotective interventions prior to their clinical evaluation. To address this, we propose an in vivo set of step-by-step criteria for IMproving Preclinical Assessment of Cardioprotective Therapies ('IMPACT'), for investigators to consider adopting before embarking on clinical studies, the aim of which is to improve the likelihood of translating novel cardioprotective interventions into the clinical setting for patient benefit.
Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Traumatismo por Reperfusão , Animais , Insuficiência Cardíaca/prevenção & controle , HumanosRESUMO
OBJECTIVES: Major trauma in adults induces immune dysfunction, with diminished expression of human leukocyte antigen-DR on circulating monocytes. No pediatric data are available. This study described the kinetics of human leukocyte antigen-DR on circulating monocytes following major pediatric trauma and relationships between human leukocyte antigen-DR on circulating monocytes and outcomes. DESIGN: Prospective observational study. SETTING: PICU and trauma unit at a tertiary-care university hospital in South Africa. PATIENTS: Children between 1 month and 13 years hospitalized for severe brain trauma or trauma with an Injury Severity Score greater than or equal to 16, from November 2016 to March 2017. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We included 36 children. Median (interquartile range) age and Injury Severity Score were 7 years (4.9-10.5 yr) and 25 years (22.7-30 yr), respectively. Blood samples (n = 83) for standardized human leukocyte antigen-DR on circulating monocytes measurement were collected at days 1-2, 3-4, and 8-9 after injury (D1, D3, and D8, respectively). On D1, median (interquartile range) human leukocyte antigen-DR on circulating monocytes was markedly reduced relative to normal values (7,031 [5,204-11,201] antibodies per cell). There was a significant increase in human leukocyte antigen-DR on circulating monocytes from D1 to D8. Although all patients with secondary infections (n = 8; 22%) had human leukocyte antigen-DR on circulating monocytes less than 15,000 antibodies per cell at D3, human leukocyte antigen-DR on circulating monocytes levels were not associated with the occurrence of secondary infections (p = 0.22). At D3, human leukocyte antigen-DR on circulating monocytes was significantly higher in patients discharged home (n = 21) by Day 30 after trauma compared with those who died or were still hospitalized (n = 14) (p = 0.02). CONCLUSIONS: Pediatric severe trauma induced an early and dramatic decrease in human leukocyte antigen-DR on circulating monocytes expression. This alteration of innate immunity was not associated with the occurrence of secondary infection, possibly due to a lack of statistical power. However, human leukocyte antigen-DR on circulating monocytes at Day 3 is a potential indicator of those at high risk of secondary infection and worse outcomes.
Assuntos
Antígenos HLA-DR , Monócitos , Adulto , Criança , Humanos , Escala de Gravidade do Ferimento , Estudos Prospectivos , África do SulRESUMO
The introduction of antiretroviral therapy (ART) has improved the life expectancy of patients infected with human immunodeficiency virus (HIV). However, this population is at an increased risk for noncommunicable diseases, including atherosclerotic cardiovascular disease (CVD). Both ART and viral infection may be potential contributors to the pathophysiology of HIV-related CVD. The mechanisms behind this remain unclear, but it is critical to delineate early biomarkers of cardiovascular risk in the HIV population. In this review, we postulate that potential biomarkers could include alterations to high-density lipoprotein (HDL). Indeed, recent data suggest that HIV and ART may induce structural changes of HDL, thus resulting in shifts in HDL subclass distribution and HDL functionality.
Assuntos
Fármacos Anti-HIV/uso terapêutico , Doenças Cardiovasculares/sangue , Dislipidemias/sangue , Infecções por HIV/tratamento farmacológico , Sobreviventes de Longo Prazo ao HIV , Lipoproteínas HDL/sangue , África Subsaariana/epidemiologia , Biomarcadores/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Dislipidemias/diagnóstico , Dislipidemias/epidemiologia , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Fatores de Risco de Doenças Cardíacas , Humanos , Prognóstico , Medição de RiscoRESUMO
Cardiovascular diseases (CVDs) are the leading causes of death worldwide. CVD pathophysiology is often characterized by increased stiffening of the heart muscle due to fibrosis, thus resulting in diminished cardiac function. Fibrosis can be caused by increased oxidative stress and inflammation, which is strongly linked to lifestyle and environmental factors such as diet, smoking, hyperglycemia, and hypertension. These factors can affect gene expression through epigenetic modifications. Lysyl oxidase like 2 (LOXL2) is responsible for collagen and elastin cross-linking in the heart, and its dysregulation has been pathologically associated with increased fibrosis. Additionally, studies have shown that, LOXL2 expression can be regulated by DNA methylation and histone modification. However, there is a paucity of data on LOXL2 regulation and its role in CVD. As such, this review aims to gain insight into the mechanisms by which LOXL2 is regulated in physiological conditions, as well as determine the downstream effectors responsible for CVD development.
Assuntos
Aminoácido Oxirredutases/genética , Cardiopatias/genética , Miocárdio/patologia , Aminoácido Oxirredutases/metabolismo , Animais , Epigênese Genética , Fibrose , Redes Reguladoras de Genes , Cardiopatias/metabolismo , Humanos , Miocárdio/metabolismoRESUMO
Although rollout of combined antiretroviral treatment (cART) has blunted human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) onset, there is increased development of cardiovascular diseases (CVDs) in HIV-infected individuals. While most HIV-infected individuals on cART achieve viral suppression, this may not necessarily result in complete immunological recovery. This study therefore evaluated T-cell-mediated changes and coagulation markers in HIV-positive individuals to ascertain their potential to increase CVD risk. Eighty participants were recruited (Worcester, South Africa), and fasted blood was collected to evaluate: 1) immune activation (CD38 expression on CD4+ and CD8+ T cells) and thrombus formation [tissue factor (CD142)] on CD4+ and CD8+ T cells; 2) monocyte subpopulations (nonclassical, intermediate, and classical); and 3) classical regulatory T (Treg) cells with activation markers [glycoprotein A repetitions predominant (GARP) and special AT-rich sequence-binding protein 1 (SATB-1)]. High- and low-density lipoprotein subclasses (Lipoprint) were also determined. This study revealed four key findings for HIV-positive patients: 1) coexpression of the CD142 coagulation marker together with immune activation on both CD4+ and CD8+ T cells during chronic infection stages; 2) Treg cell activation and upregulated GARP and SATB-1 contributing to Treg dysfunction in chronic HIV; 3) proatherogenic monocyte subset expansion with significant correlation between T-cell activation and macrophage activation (marker: CD163); and 4) significant correlation between immune activation and lipid subclasses, revealing crucial changes that can be missed by traditional lipid marker assessments (LDL and HDL). These data also implicate lipopolysaccharide-binding protein as a crucial link between immune activation, lipid alterations, and increased CVD risk. NEW & NOTEWORTHY With combined antiretroviral treatment rollout, HIV-AIDS patients are increasingly associated with cardiovascular diseases onset. This study demonstrated the significant interplay between adaptive immune cell activation and monocyte/macrophage markers in especially HIV-positive individuals with virological failure and on second line treatment. Our data also show a unique link between immune activation and lipid subclass alterations, revealing important changes that can be missed by traditional lipid marker assessments (e.g., LDL and HDL).
Assuntos
Coagulação Sanguínea , Doenças Cardiovasculares/etiologia , Infecções por HIV/complicações , Lipídeos/sangue , Ativação Linfocitária , Monócitos/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Fármacos Anti-HIV/uso terapêutico , Antígenos CD/sangue , Antígenos de Diferenciação Mielomonocítica/sangue , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/imunologia , Estudos de Casos e Controles , Proliferação de Células , Estudos Transversais , Feminino , Fatores de Transcrição Forkhead/sangue , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Humanos , Ativação de Macrófagos , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/sangue , Proteínas de Membrana/sangue , Pessoa de Meia-Idade , Monócitos/metabolismo , Receptores de Superfície Celular/sangue , Fatores de Risco , Subpopulações de Linfócitos T/metabolismo , Tromboplastina/metabolismoRESUMO
The survivor activating factor enhancement (SAFE) pathway was discovered as an alternative intrinsic pro-survival signaling pathway to the reperfusion injury salvage kinase pathway for cardioprotection against ischemia-reperfusion injury. The delineation of this pathway, made of key components such as cytokines of the immune system and transcription factors, has brought major advancements in our understanding on how the heart is able to protect itself against ischemia-reperfusion injury. In this viewpoint, we describe the major steps leading to the discovery of the SAFE pathway in small animal models to date and we discuss its translation to large animals and humans.
Assuntos
Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Fármacos Cardiovasculares/uso terapêutico , Desenho de Fármacos , Humanos , Terapia de Alvo Molecular , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidoresRESUMO
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury.
Assuntos
Cardiologia , Oncologia , Infarto do Miocárdio , Acidente Vascular Cerebral , Animais , Antineoplásicos/efeitos adversos , Cardiologia/métodos , Cardiologia/tendências , Citoproteção , Humanos , Precondicionamento Isquêmico Miocárdico/métodos , Oncologia/métodos , Oncologia/tendências , Traumatismo por Reperfusão Miocárdica/prevenção & controleRESUMO
BACKGROUND: Obesity is associated with a change in high-density lipoprotein (HDL) function and subclass. Exercise training reduces cardiovascular risk in obese patients. We aimed to explore the effect of an exercise training stimulus on HDL functionality and subclass in obese women. METHODS: Thirty-two obese black South African women were randomly assigned to exercise (combined aerobic and resistance exercise) or control (no exercise) conditions for 12-weeks. Pre- and post-testing included venous blood sampling for analysis of lipid profile and HDL functionality, by measuring cellular cholesterol efflux capacity, reduction in endothelial vascular cell adhesion molecule (VCAM) expression (anti-inflammatory function), paraoxonase (PON) (antioxidative function) and platelet activating factor acetylhydrolase (PAF-AH) activities (anti-thrombotic function). PON-1 and PAF-AH expression were determined in serum and in isolated HDL using Western blotting. Levels of large, intermediate and small HDL subclasses were measured using the Lipoprint® system. RESULTS: Exercise training resulted in a decrease in body mass index (- 1.0 ± 0.5% vs + 1.2 ± 0.6%, p = 0.010), PON activity (- 8.7 ± 2.4% vs + 1.1 ± 3.0%, p = 0.021), PAF-AH serum expression (- 22.1 ± 8.0% vs + 16.9 ± 9.8, p = 0.002), and the distribution of small HDL subclasses (- 10.1 ± 5.4% vs + 15.7 ± 6.6%, p = 0.004) compared to controls. Exercise did not alter HDL cellular cholesterol efflux capacity and anti-inflammatory function. CONCLUSIONS: These results demonstrate the potential for exercise training to modify HDL subclass distribution and HDL function in obese women. TRIAL REGISTRATION: Clinical trials number: PACTR201711002789113 .
Assuntos
Terapia por Exercício , Lipoproteínas HDL/sangue , Obesidade/terapia , 1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , Adulto , Arildialquilfosfatase/sangue , População Negra , Feminino , Humanos , Obesidade/sangue , Molécula 1 de Adesão de Célula Vascular/sangue , Adulto JovemRESUMO
Despite improvements in modern cardiovascular therapy, the morbidity and mortality of ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and worldwide. Patients with IHD may benefit from therapies that would accelerate natural processes of postnatal collateral vessel formation and/or muscle regeneration. Here, we discuss the use of cells in the context of heart repair, and the most relevant results and current limitations from clinical trials using cell-based therapies to treat IHD and HF. We identify and discuss promising potential new therapeutic strategies that include ex vivo cell-mediated gene therapy, the use of biomaterials and cell-free therapies aimed at increasing the success rates of therapy for IHD and HF. The overall aim of this Position Paper of the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to improve the therapeutic application of cell-based therapies for cardiac regeneration and repair.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Insuficiência Cardíaca/terapia , Coração/fisiologia , Isquemia Miocárdica/terapia , Rastreamento de Células/métodos , Ensaios Clínicos como Assunto , Confiabilidade dos Dados , Ética Médica , Insuficiência Cardíaca/fisiopatologia , Humanos , Isquemia Miocárdica/fisiopatologia , Segurança do Paciente , Seleção de Pacientes , Regeneração/fisiologia , Transplante de Células-Tronco/métodos , Volume Sistólico/fisiologia , Resultado do TratamentoRESUMO
To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research.
Assuntos
Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica , Animais , HumanosRESUMO
Recent advances in basic cardiovascular research as well as their translation into the clinical situation were the focus at the last "New Frontiers in Cardiovascular Research meeting". Major topics included the characterization of new targets and procedures in cardioprotection, deciphering new players and inflammatory mechanisms in ischemic heart disease as well as uncovering microRNAs and other biomarkers as versatile and possibly causal factors in cardiovascular pathogenesis. Although a number of pathological situations such as ischemia-reperfusion injury or atherosclerosis can be simulated and manipulated in diverse animal models, also to challenge new drugs for intervention, patient studies are the ultimate litmus test to obtain unequivocal information about the validity of biomedical concepts and their application in the clinics. Thus, the open and bidirectional exchange between bench and bedside is crucial to advance the field of ischemic heart disease with a particular emphasis of understanding long-lasting approaches in cardioprotection.
Assuntos
Doenças Cardiovasculares , Pesquisa Translacional Biomédica , Animais , HumanosRESUMO
In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome.
Assuntos
Cardiologia/tendências , Doenças Cardiovasculares , Nanomedicina Teranóstica/tendências , Animais , Cardiologia/métodos , HumanosRESUMO
Melatonin protects the heart against myocardial ischemia/reperfusion injury via the activation of the survivor activating factor enhancement (SAFE) pathway which involves tumor necrosis factor alpha (TNFα) and the signal transducer and activator of transcription 3 (STAT3). Toll-like receptor 4 (TLR4) plays a crucial role in myocardial ischemia/reperfusion injury and activates TNFα. In this study, we investigated whether melatonin may target TLR4 to activate the SAFE pathway. Isolated hearts from rats or mice were subjected to ischemia/reperfusion injury. Melatonin (75 ng/L) and/or TAK242 (a specific inhibitor of TLR4 signaling, 500 nm) were administered to the rat hearts before the induction of ischemia. Pre-ischemic myocardial STAT3 was evaluated by Western blotting. Lipopolysaccharide (LPS, a stimulator of TLR4) was administered to wild type, TNFα receptor 2 knockout or cardiomyocyte-specific STAT3-deficient mice (2.8 mg/kg, i.p) 45 min before the heart isolation. Myocardial infarct size was measured as an endpoint. Compared to the control, administration of melatonin reduced myocardial infarct size (34.7 ± 2.8% versus 62.6 ± 2.7%, P < 0.01). This protective effect was abolished in the presence of TAK242 (49.2 ± 6.5%). Melatonin administered alone increased the pre-ischemic activation of mitochondrial STAT3, and this effect was attenuated with TAK242. Furthermore, stimulation of TLR4 with LPS pretreatment to mice reduced myocardial infarct size of the hearts isolated from wild-type animals but failed to protect the hearts isolated from TNFα receptor 2-knockout mice or cardiomyocyte-specific STAT3-deficient mice (P < 0.001). Taken together, these data suggest that cardioprotection induced by melatonin is mediated by TLR4 to activate the SAFE pathway.
Assuntos
Cardiotônicos/farmacologia , Melatonina/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: Obesity and low high-density lipoprotein-cholesterol (HDL-C) levels are associated with cardiovascular risk. Surprisingly, despite a greater prevalence of obesity and lower HDL concentrations than white women, black South African women are relatively protected against ischaemic heart disease. METHODS: We investigated whether this apparent discrepancy may be related to different HDL function and subclass distribution in black and white, normal-weight and obese South African women (n = 40). HDL functionality was assessed by measuring paraoxonase (PON) activity, platelet activating factor acetylhydrolase (PAF-AH) activity, Oxygen Radical Absorbance Capacity (ORAC) and quantification of the expression of vascular cell adhesion molecule in endothelial cells. PON-1 and PAF-AH expression was determined in isolated HDL and serum using Western blotting. Levels of large, intermediate and small HDL subclasses were measured using the Lipoprint® system. RESULTS: PON activity was lower in white compared to black women (0.49 ± 0.09 U/L vs 0.78 ± 0.10 U/L, p < 0.05), regardless of PON-1 protein levels. Obese black women had lower PAF-AH activity (9.34 ± 1.15 U/L vs 13.89 ± 1.21 U/L, p <0.05) and HDL-associated PAF-AH expression compared to obese white women. Compared to normal-weight women, obese women had lower large HDL, greater intermediate and small HDL; an effect that was more pronounced in white women than black women. There were no differences in antioxidant capacity or anti-inflammatory function across groups. CONCLUSIONS: Our data show that both obesity and ethnicity are associated with differences in HDL functionality, while obesity was associated with decreases in large HDL subclass distribution. Measuring HDL functionality and subclass may, therefore, be important factors to consider when assessing cardiovascular risk.