Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.543
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 614(7949): 788-793, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792826

RESUMO

The sodium-chloride cotransporter (NCC) is critical for kidney physiology1. The NCC has a major role in salt reabsorption in the distal convoluted tubule of the nephron2,3, and mutations in the NCC cause the salt-wasting disease Gitelman syndrome4. As a key player in salt handling, the NCC regulates blood pressure and is the target of thiazide diuretics, which have been widely prescribed as first-line medications to treat hypertension for more than 60 years5-7. Here we determined the structures of human NCC alone and in complex with a commonly used thiazide diuretic using cryo-electron microscopy. These structures, together with functional studies, reveal major conformational states of the NCC and an intriguing regulatory mechanism. They also illuminate how thiazide diuretics specifically interact with the NCC and inhibit its transport function. Our results provide critical insights for understanding the Na-Cl cotransport mechanism of the NCC, and they establish a framework for future drug design and for interpreting disease-related mutations.


Assuntos
Microscopia Crioeletrônica , Inibidores de Simportadores de Cloreto de Sódio , Tiazidas , Humanos , Diuréticos/química , Diuréticos/farmacologia , Desenho de Fármacos , Síndrome de Gitelman/genética , Inibidores de Simportadores de Cloreto de Sódio/química , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Tiazidas/química , Tiazidas/farmacologia
2.
Nature ; 621(7977): 51-55, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37380029

RESUMO

The detection of starlight from the host galaxies of quasars during the reionization epoch (z > 6) has been elusive, even with deep Hubble Space Telescope observations1,2. The current highest redshift quasar host detected3, at z = 4.5, required the magnifying effect of a foreground lensing galaxy. Low-luminosity quasars4-6 from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)7 mitigate the challenge of detecting their underlying, previously undetected host galaxies. Here we report rest-frame optical images and spectroscopy of two HSC-SSP quasars at z > 6 with the JWST. Using near-infrared camera imaging at 3.6 and 1.5 µm and subtracting the light from the unresolved quasars, we find that the host galaxies are massive (stellar masses of 13 × and 3.4 × 1010 M☉, respectively), compact and disc-like. Near-infrared spectroscopy at medium resolution shows stellar absorption lines in the more massive quasar, confirming the detection of the host. Velocity-broadened gas in the vicinity of these quasars enables measurements of their black hole masses (1.4 × 109 and 2.0 × 108 M☉, respectively). Their location in the black hole mass-stellar mass plane is consistent with the distribution at low redshift, suggesting that the relation between black holes and their host galaxies was already in place less than a billion years after the Big Bang.

3.
Mol Cell ; 78(6): 1114-1132.e10, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32446320

RESUMO

Bromodomain-containing protein 4 (BRD4) is a cancer therapeutic target in ongoing clinical trials disrupting primarily BRD4-regulated transcription programs. The role of BRD4 in cancer has been attributed mainly to the abundant long isoform (BRD4-L). Here we show, by isoform-specific knockdown and endogenous protein detection, along with transgene expression, the less abundant BRD4 short isoform (BRD4-S) is oncogenic while BRD4-L is tumor-suppressive in breast cancer cell proliferation and migration, as well as mammary tumor formation and metastasis. Through integrated RNA-seq, genome-wide ChIP-seq, and CUT&RUN association profiling, we identify the Engrailed-1 (EN1) homeobox transcription factor as a key BRD4-S coregulator, particularly in triple-negative breast cancer. BRD4-S and EN1 comodulate the extracellular matrix (ECM)-associated matrisome network, including type II cystatin gene cluster, mucin 5, and cathepsin loci, via enhancer regulation of cancer-associated genes and pathways. Our work highlights the importance of targeted therapies for the oncogenic, but not tumor-suppressive, activity of BRD4.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Invasividade Neoplásica , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Transcrição Gênica/genética , Neoplasias de Mama Triplo Negativas/genética
4.
Proc Natl Acad Sci U S A ; 120(21): e2220568120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186823

RESUMO

A fundamental question in biology is how a eukaryotic cell type can be stably maintained through many rounds of DNA replication and cell division. In this paper, we investigate this question in a fungal species, Candida albicans, where two different cells types (white and opaque) arise from the same genome. Once formed, each cell type is stable for thousands of generations. Here, we investigate the mechanisms underlying opaque cell "memory." Using an auxin-mediated degradation system, we rapidly removed Wor1, the primary transcription activator of the opaque state and, using a variety of methods, determined how long cells can maintain the opaque state. Within approximately 1 h of Wor1 destruction, opaque cells irreversibly lose their memory and switch to the white cell state. This observation rules out several competing models for cell memory and demonstrates that the continuous presence of Wor1 is needed to maintain the opaque cell state-even across a single cell division cycle. We also provide evidence for a threshold concentration of Wor1 in opaque cells, below which opaque cells irreversibly switch to white cells. Finally, we provide a detailed description of the gene expression changes that occur during this switch in cell types.


Assuntos
Eucariotos , Células Eucarióticas , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ciclo Celular , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/metabolismo , Fenótipo
5.
PLoS Genet ; 19(5): e1010774, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216416

RESUMO

Pbp1 (poly(A)-binding protein-binding protein 1) is a cytoplasmic stress granule marker that is capable of forming condensates that function in the negative regulation of TORC1 signaling under respiratory conditions. Polyglutamine expansions in its mammalian ortholog ataxin-2 lead to spinocerebellar dysfunction due to toxic protein aggregation. Here, we show that loss of Pbp1 in S. cerevisiae leads to decreased amounts of mRNAs and mitochondrial proteins which are targets of Puf3, a member of the PUF (Pumilio and FBF) family of RNA-binding proteins. We found that Pbp1 supports the translation of Puf3-target mRNAs in respiratory conditions, such as those involved in the assembly of cytochrome c oxidase and subunits of mitochondrial ribosomes. We further show that Pbp1 and Puf3 interact through their respective low complexity domains, which is required for Puf3-target mRNA translation. Our findings reveal a key role for Pbp1-containing assemblies in enabling the translation of mRNAs critical for mitochondrial biogenesis and respiration. They may further explain prior associations of Pbp1/ataxin-2 with RNA, stress granule biology, mitochondrial function, and neuronal health.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ataxina-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biogênese de Organelas , Proteínas de Ligação a RNA/metabolismo , Mamíferos/genética , Proteínas de Transporte/genética
6.
Nat Methods ; 19(7): 803-811, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710609

RESUMO

The laboratory mouse ranks among the most important experimental systems for biomedical research and molecular reference maps of such models are essential informational tools. Here, we present a quantitative draft of the mouse proteome and phosphoproteome constructed from 41 healthy tissues and several lines of analyses exemplify which insights can be gleaned from the data. For instance, tissue- and cell-type resolved profiles provide protein evidence for the expression of 17,000 genes, thousands of isoforms and 50,000 phosphorylation sites in vivo. Proteogenomic comparison of mouse, human and Arabidopsis reveal common and distinct mechanisms of gene expression regulation and, despite many similarities, numerous differentially abundant orthologs that likely serve species-specific functions. We leverage the mouse proteome by integrating phenotypic drug (n > 400) and radiation response data with the proteomes of 66 pancreatic ductal adenocarcinoma (PDAC) cell lines to reveal molecular markers for sensitivity and resistance. This unique atlas complements other molecular resources for the mouse and can be explored online via ProteomicsDB and PACiFIC.


Assuntos
Arabidopsis , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Arabidopsis/genética , Carcinoma Ductal Pancreático/metabolismo , Espectrometria de Massas , Camundongos , Neoplasias Pancreáticas/genética , Proteoma/análise
7.
Mol Syst Biol ; 20(1): 28-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177929

RESUMO

Kinase inhibitors (KIs) are important cancer drugs but often feature polypharmacology that is molecularly not understood. This disconnect is particularly apparent in cancer entities such as sarcomas for which the oncogenic drivers are often not clear. To investigate more systematically how the cellular proteotypes of sarcoma cells shape their response to molecularly targeted drugs, we profiled the proteomes and phosphoproteomes of 17 sarcoma cell lines and screened the same against 150 cancer drugs. The resulting 2550 phenotypic profiles revealed distinct drug responses and the cellular activity landscapes derived from deep (phospho)proteomes (9-10,000 proteins and 10-27,000 phosphorylation sites per cell line) enabled several lines of analysis. For instance, connecting the (phospho)proteomic data with drug responses revealed known and novel mechanisms of action (MoAs) of KIs and identified markers of drug sensitivity or resistance. All data is publicly accessible via an interactive web application that enables exploration of this rich molecular resource for a better understanding of active signalling pathways in sarcoma cells, identifying treatment response predictors and revealing novel MoA of clinical KIs.


Assuntos
Antineoplásicos , Sarcoma , Humanos , Proteômica/métodos , Proteoma , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sarcoma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
9.
EMBO Rep ; 24(3): e55286, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36652307

RESUMO

An increasing amount of evidence emphasizes the role of metabolic reprogramming in immune cells to fight infections. However, little is known about the regulation of metabolite transporters that facilitate and support metabolic demands. In this study, we found that the expression of equilibrative nucleoside transporter 3 (ENT3, encoded by solute carrier family 29 member 3, Slc29a3) is part of the innate immune response, which is rapidly upregulated upon pathogen invasion. The transcription of Slc29a3 is directly regulated by type I interferon-induced signaling, demonstrating that this metabolite transporter is an interferon-stimulated gene (ISG). Suprisingly, we unveil that several viruses, including SARS-CoV-2, require ENT3 to facilitate their entry into the cytoplasm. The removal or suppression of Slc29a3 expression is sufficient to significantly decrease viral replication in vitro and in vivo. Our study reveals that ENT3 is a pro-viral ISG co-opted by some viruses to gain a survival advantage.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Interferons/metabolismo , Proteínas de Membrana Transportadoras/genética , Imunidade Inata , Genoma Viral , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo
10.
J Immunol ; 211(4): 576-590, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37427982

RESUMO

TLR signaling in B cells triggers their activation and differentiation independent of help from T cells. Plasmacytoid dendritic cells (pDCs) cooperate with B cells to boost TLR-stimulated T-independent humoral immunity; however, the molecular mechanisms remain elusive. In this study, we demonstrate that in the mouse system, the adjuvant effects of pDCs also occurred following challenge with pathogens and that follicular (FO) B cells were more sensitive to pDC-induced enhancement than were marginal zone (MZ) B cells. Moreover, pDCs migrated to the FO zones and interacted with FO B cells upon stimulation in vivo. CXCL10, a ligand for CXCR3 expressed on pDCs, was superinduced in the coculture system and facilitated the cooperative activation of B cells. Moreover, pDCs also promoted TLR-stimulated autoantibody production in FO B and MZ B cells. Ingenuity Pathway Analysis and gene set enrichment analysis revealed that type I IFN (IFN-I)-mediated JAK-STAT and Ras-MAPK pathways were highly enriched in R848-stimulated B cells cocultured with pDCs compared with B cells alone. Whereas IFN-I receptor 1 deficiency reduced pDC-enhanced B cell responses, STAT1 deficiency displayed a more pronounced defect. One of the STAT1-dependent but IFN-I-independent mechanisms was TLR-induced STAT1-S727 phosphorylation by p38 MAPK. Serine 727 to alanine mutation attenuated the synergism between pDCs and B cells. In conclusion, we uncover a molecular mechanism for pDC-enhanced B cell response and define a crucial role of the IFN-I/TLR-mediated signaling pathway through a p38 MAPK-STAT1 axis in controlling T-independent humoral immunity and providing a novel therapeutic target for treating autoimmune diseases.


Assuntos
Interferon Tipo I , Proteínas Quinases p38 Ativadas por Mitógeno , Camundongos , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Interferon Tipo I/metabolismo , Fosforilação , Células Dendríticas
11.
J Med Genet ; 61(2): 176-181, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37798098

RESUMO

BACKGROUND: Expanded genetic screening before conception or during prenatal care can provide a more comprehensive evaluation of heritable fetal diseases. This study aimed to provide a large cohort to evaluate the significance of expanded carrier screening and to consolidate the role of expanded genetic screening in prenatal care. METHODS: This multicentre, retrospective cohort study was conducted between 31 December 2019 and 21 July 2022. A screening panel containing 302 genes and next-generation sequencing were used for the evaluation. The patients were referred from obstetric clinics, infertility centres and medical centres. Genetic counsellors conducted consultation for at least 15 min before and after screening. RESULTS: A total of 1587 patients were screened, and 653 pairs were identified. Among the couples who underwent the screening, 62 (9.49%) had pathogenic variants detected on the same genes. In total, 212 pathogenic genes were identified in this study. A total of 1173 participants carried at least one mutated gene, with a positive screening rate of 73.91%. Among the pathogenic variants that were screened, the gene encoding gap junction beta-2 (GJB2) exhibited the highest prevalence, amounting to 19.85%. CONCLUSION: Next-generation sequencing carrier screening provided additional information that may alter prenatal obstetric care by 9.49%. Pan-ethnic genetic screening and counselling should be suggested for couples of fertile age.


Assuntos
Aconselhamento , Testes Genéticos , Gravidez , Feminino , Humanos , Triagem de Portadores Genéticos , Estudos Retrospectivos , Estudos Prospectivos
12.
BMC Bioinformatics ; 22(Suppl 5): 638, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266977

RESUMO

BACKGROUND: Mild cognitive impairment (MCI) is the transition stage between the cognitive decline expected in normal aging and more severe cognitive decline such as dementia. The early diagnosis of MCI plays an important role in human healthcare. Current methods of MCI detection include cognitive tests to screen for executive function impairments, possibly followed by neuroimaging tests. However, these methods are expensive and time-consuming. Several studies have demonstrated that MCI and dementia can be detected by machine learning technologies from different modality data. This study proposes a multi-stream convolutional neural network (MCNN) model to predict MCI from face videos. RESULTS: The total effective data are 48 facial videos from 45 participants, including 35 videos from normal cognitive participants and 13 videos from MCI participants. The videos are divided into several segments. Then, the MCNN captures the latent facial spatial features and facial dynamic features of each segment and classifies the segment as MCI or normal. Finally, the aggregation stage produces the final detection results of the input video. We evaluate 27 MCNN model combinations including three ResNet architectures, three optimizers, and three activation functions. The experimental results showed that the ResNet-50 backbone with Swish activation function and Ranger optimizer produces the best results with an F1-score of 89% at the segment level. However, the ResNet-18 backbone with Swish and Ranger achieves the F1-score of 100% at the participant level. CONCLUSIONS: This study presents an efficient new method for predicting MCI from facial videos. Studies have shown that MCI can be detected from facial videos, and facial data can be used as a biomarker for MCI. This approach is very promising for developing accurate models for screening MCI through facial data. It demonstrates that automated, non-invasive, and inexpensive MCI screening methods are feasible and do not require highly subjective paper-and-pencil questionnaires. Evaluation of 27 model combinations also found that ResNet-50 with Swish is more stable for different optimizers. Such results provide directions for hyperparameter tuning to further improve MCI predictions.


Assuntos
Disfunção Cognitiva , Redes Neurais de Computação , Disfunção Cognitiva/diagnóstico , Humanos , Idoso , Aprendizado de Máquina , Masculino , Feminino , Face/diagnóstico por imagem , Gravação em Vídeo/métodos
13.
J Clin Microbiol ; 62(7): e0020724, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38888305

RESUMO

The Panbio COVID-19/Flu A&B Panel (Abbott) is an in vitro diagnostic rapid test designed for the qualitative detection of nucleocapsid proteins SARS-CoV-2 and nucleoprotein influenza A and B antigens in nasal mid-turbinate (NMT) swab specimens from symptomatic individuals meeting COVID-19 and influenza clinical and/or epidemiological criteria. This study, the largest global one to date using fresh samples, aimed to assess the diagnostic sensitivity and specificity of the Panbio COVID-19/Flu A&B Panel in freshly collected NMT swab specimens from individuals suspected of respiratory viral infection consistent with COVID-19 and/or influenza within the first 5 days of symptom onset compared with results obtained with the cobas SARS-CoV-2 and influenza A/B qualitative assay (cobas 6800/8800 systems), which were tested using nasopharyngeal swab samples. A total of 512 evaluable subjects were enrolled in the COVID-19 cohort across 18 sites, and 1,148 evaluable subjects were enrolled in the influenza cohort across 22 sites in the Asia-Pacific, Europe, and the USA. The Panbio COVID-19/Flu A&B Panel demonstrated a sensitivity of 80.4% and a specificity of 99.7% for COVID-19. For influenza A, the sensitivity and specificity rates were 80.6% and 99.3%, respectively. Likewise, for influenza B, the sensitivity and specificity rates were 80.8% and 99.4%, respectively. In conclusion, the Panbio COVID-19/Flu A&B Panel emerges as a suitable rapid test for detecting COVID-19 and influenza in symptomatic subjects across diverse global populations, exhibiting high sensitivity. The assay achieved a sensitivity of 94.4% in samples with Ct ≤24 for COVID-19 and 92.6% in samples with Ct ≤30 for influenza A and B. IMPORTANCE: The Panbio COVID-19/Flu A&B Panel is a suitable rapid test for detecting COVID-19 and influenza in symptomatic subjects across diverse global populations, exhibiting high sensitivity. The assay achieved a sensitivity of 94.0% in samples with Ct ≤24 for COVID-19 and 92.6% in samples with Ct ≤30 for influenza A and B.


Assuntos
Antígenos Virais , COVID-19 , Vírus da Influenza A , Vírus da Influenza B , Influenza Humana , SARS-CoV-2 , Sensibilidade e Especificidade , Humanos , COVID-19/diagnóstico , Influenza Humana/diagnóstico , Influenza Humana/virologia , Vírus da Influenza B/isolamento & purificação , Vírus da Influenza B/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Adulto , Pessoa de Meia-Idade , Feminino , Masculino , Antígenos Virais/análise , Antígenos Virais/imunologia , Adulto Jovem , Adolescente , Idoso , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/imunologia , Criança , Pré-Escolar , Nasofaringe/virologia , Teste para COVID-19/métodos , Lactente , Idoso de 80 Anos ou mais
14.
Nat Methods ; 18(1): 76-83, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288958

RESUMO

Single-cell proteomics by mass spectrometry (SCoPE-MS) is a recently introduced method to quantify multiplexed single-cell proteomes. While this technique has generated great excitement, the underlying technologies (isobaric labeling and mass spectrometry (MS)) have technical limitations with the potential to affect data quality and biological interpretation. These limitations are particularly relevant when a carrier proteome, a sample added at 25-500× the amount of a single-cell proteome, is used to enable peptide identifications. Here we perform controlled experiments with increasing carrier proteome amounts and evaluate quantitative accuracy, as it relates to mass analyzer dynamic range, multiplexing level and number of ions sampled. We demonstrate that an increase in carrier proteome level requires a concomitant increase in the number of ions sampled to maintain quantitative accuracy. Lastly, we introduce Single-Cell Proteomics Companion (SCPCompanion), a software tool that enables rapid evaluation of single-cell proteomic data and recommends instrument and data analysis parameters for improved data quality.


Assuntos
Fragmentos de Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Análise de Célula Única/métodos , Software , Espectrometria de Massas em Tandem/métodos , Células HeLa , Humanos , Células K562
15.
J Synchrotron Radiat ; 31(Pt 2): 252-259, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241123

RESUMO

In this study, a combination of X-ray excited optical luminescence (XEOL), time-resolved XEOL (TR-XEOL) and the Hanbury-Brown and Twiss (HB-T) interferometer at the Taiwan Photon Source (TPS) 23A X-ray nanoprobe beamline for exploring quantum materials is demonstrated. On the basis of the excellent spatial resolution rendered using a nano-focused beam, emission distributions of artificial micro-diamonds can be obtained by XEOL maps, and featured emission peaks of a selected local area can be obtained by XEOL spectra. The hybrid bunch mode of the TPS not only provides a sufficiently high peak power density for experiments at each beamline but also permits high-quality temporal domain (∼200 ns) measurements for investigating luminescence dynamics. From TR-XEOL measurements, the decay lifetime of micro-diamonds is determined to be approximately 16 ns. Furthermore, the XEOL spectra of artificial micro-diamonds can be investigated by the HB-T interferometer to identify properties of single-photon sources. The unprecedented strategy of combining XEOL, TR-XEOL and the HB-T interferometer at the X-ray nanoprobe beamline will open new avenues with significant characterization abilities for unraveling the emission mechanisms of single-photon sources for quantum materials.

16.
Int J Obes (Lond) ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232101

RESUMO

BACKGROUND: Obesity paradox addressing all-cause mortality has been described in several chronic total occlusion (CTO) studies. However, the impact of aging on long-term cardiac events in patients with overweight and obesity with CTO recanalization were less studied. METHODS: A total of 458 patients (64.4 ± 11.3 years, 403 male) with CTO interventions were enrolled. The overweight/obesity group included 311 patients with body mass index (BMI) ≧24 kg/m2 and the non-obesity group included 147. With a median follow-up of 40.0 (17.9-61.4) months, 422 patients with successful true-lumen recanalization were further assessed for target lesion failure [TLF: cardiac death, target vessel myocardial infarction (TVMI), target lesion revascularization (TLR)]. RESULTS: At follow-up, the rates of cardiac death, TVMI, TLR, TLF, and stent thrombosis were 1.9%, 1.9%, 9.2%, 10.7%, and 0.5%, respectively. The TVMI-free survival was borderline better (p = 0.067 by log-rank test) in overweight/obesity than non-obesity group. Among patients <65 years of age, the TVMI-free survival was significantly better in the overweight/obesity group (p = 0.013 compared to non-obesity group by log-rank test). In multivariate Cox regression model, the non-obesity patients younger than 65 years were at a higher risk of TVMI, not only among those <65 years of age (hazard ratio = 11.0, 95% CI = 1.1-106.0) but also among the whole patients (hazard ratio=6.9, 95% CI = 1.4-35.1) with successful CTO recanalization. CONCLUSIONS: For those with true-lumen recanalized CTO, the higher risk of TVMI after successful recanalization was rather evident in patients <65 years of age and without overweight/obesity, suggesting that aging might attenuate prognostic significance of "obesity paradox" for CTO interventions.

17.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35945035

RESUMO

Neural network (NN)-based protein modeling methods have improved significantly in recent years. Although the overall accuracy of the two non-homology-based modeling methods, AlphaFold and RoseTTAFold, is outstanding, their performance for specific protein families has remained unexamined. G-protein-coupled receptor (GPCR) proteins are particularly interesting since they are involved in numerous pathways. This work directly compares the performance of these novel deep learning-based protein modeling methods for GPCRs with the most widely used template-based software-Modeller. We collected the experimentally determined structures of 73 GPCRs from the Protein Data Bank. The official AlphaFold repository and RoseTTAFold web service were used with default settings to predict five structures of each protein sequence. The predicted models were then aligned with the experimentally solved structures and evaluated by the root-mean-square deviation (RMSD) metric. If only looking at each program's top-scored structure, Modeller had the smallest average modeling RMSD of 2.17 Å, which is better than AlphaFold's 5.53 Å and RoseTTAFold's 6.28 Å, probably since Modeller already included many known structures as templates. However, the NN-based methods (AlphaFold and RoseTTAFold) outperformed Modeller in 21 and 15 out of the 73 cases with the top-scored model, respectively, where no good templates were available for Modeller. The larger RMSD values generated by the NN-based methods were primarily due to the differences in loop prediction compared to the crystal structures.


Assuntos
Receptores Acoplados a Proteínas G , Software , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Receptores Acoplados a Proteínas G/química
18.
Nat Mater ; 22(5): 591-598, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37012436

RESUMO

Large spin-orbit torques (SOTs) generated by topological materials and heavy metals interfaced with ferromagnets are promising for next-generation magnetic memory and logic devices. SOTs generated from y spin originating from spin Hall and Edelstein effects can realize field-free magnetization switching only when the magnetization and spin are collinear. Here we circumvent the above limitation by utilizing unconventional spins generated in a MnPd3 thin film grown on an oxidized silicon substrate. We observe conventional SOT due to y spin, and out-of-plane and in-plane anti-damping-like torques originated from z spin and x spin, respectively, in MnPd3/CoFeB heterostructures. Notably, we have demonstrated complete field-free switching of perpendicular cobalt via out-of-plane anti-damping-like SOT. Density functional theory calculations show that the observed unconventional torques are due to the low symmetry of the (114)-oriented MnPd3 films. Altogether our results provide a path toward realization of a practical spin channel in ultrafast magnetic memory and logic devices.

19.
J Pediatr ; 273: 113913, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38218371

RESUMO

OBJECTIVE: To assess the rate and risk factors for reactivation of retinopathy of prematurity (ROP) after intravitreal injection (IVI) of antivascular endothelial growth factor (VEGF) agents. STUDY DESIGN: Infants who received IVI therapy between 2017 and 2022 were enrolled and divided into 2 groups: those with and without ROP reactivation. Information on ROP variables and patient variables were analyzed using multivariable logistic regression. RESULTS: A total of 114 infants with 223 eyes were enrolled in the study. The ROP reactivation rate was 11.4% of infants (9.9% of eyes). The mean duration of reactivation was 84 ± 45 days. Among the 223 eyes treated with IVI, reactivation rates were 6% for bevacizumab, 13.9% for aflibercept, and 22.2% for ranibizumab. A multivariable regression model showed that ranibizumab was an independent risk factor (OR 11.4, P = .008) for reactivation. Other risk factors included infants with periventricular leukomalacia (OR 13.8, P = .003), patent ductus arteriosus ligation (OR 10.7, P = .032), and infants who still required invasive mechanical ventilation on the day of IVI therapy (OR 7.0, P = .018). CONCLUSIONS: All anti-VEGF agents carry a risk of ROP reactivation, with the risk being greater with ranibizumab 0.25 mg than with bevacizumab 0.625 mg. Reactivation of ROP should be assessed vigilantly, especially in those infants with increased risks. Future research to determine the optimal anti-VEGF selection and dosage in high-risk infants is warranted.


Assuntos
Inibidores da Angiogênese , Bevacizumab , Injeções Intravítreas , Ranibizumab , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Retinopatia da Prematuridade , Humanos , Retinopatia da Prematuridade/tratamento farmacológico , Injeções Intravítreas/efeitos adversos , Masculino , Feminino , Inibidores da Angiogênese/efeitos adversos , Inibidores da Angiogênese/administração & dosagem , Recém-Nascido , Bevacizumab/efeitos adversos , Bevacizumab/administração & dosagem , Bevacizumab/uso terapêutico , Fatores de Risco , Ranibizumab/administração & dosagem , Ranibizumab/efeitos adversos , Receptores de Fatores de Crescimento do Endotélio Vascular/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/efeitos adversos , Proteínas Recombinantes de Fusão/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Estudos Retrospectivos , Recidiva , Recém-Nascido Prematuro , Lactente
20.
Am J Kidney Dis ; 83(5): 648-658, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38372686

RESUMO

Magnesium (Mg2+), also known as "the forgotten ion," is the second most abundant intracellular cation and is essential in a broad range of intracellular physiological and biochemical reactions. Its deficiency, hypomagnesemia (Mg2+<1.8mg/dL), is a prevalent condition and routinely poses challenges in its management in clinical practice. Sodium/glucose cotransporter 2 (SGLT2) inhibitors have emerged as a new class of drugs with treating hypomagnesemia as their unique extraglycemic benefit. The beneficial effect of SGLT2 inhibitors on magnesium balance in patients with diabetes with or without hypomagnesemia has been noted as a class effect in recent meta-analysis data from randomized clinical trials. Some reports have demonstrated their role in treating refractory hypomagnesemia in patients with or without diabetes. Moreover, studies on animal models have attempted to illustrate the effect of SGLT2 inhibitors on Mg2+homeostasis. In this review, we discuss the current evidence and possible pathophysiological mechanisms, and we provide directions for further research. We conclude by suggesting the effect of SGLT2 inhibitors on Mg2+homeostasis is a class effect, with certain patients gaining significant benefits. Further studies are needed to examine whether SGLT2 inhibitors can become a desperately needed novel class of medicines in treating hypomagnesemia.


Assuntos
Homeostase , Deficiência de Magnésio , Magnésio , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Magnésio/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Deficiência de Magnésio/tratamento farmacológico , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA