Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 15(10): 8048-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26726461

RESUMO

The mechanical, thermal, optical, electrical and morphological properties of cellulose, an excellent natural biomaterial, can be improved by organic-inorganic hybrid composite methods. Based on the pristine properties of cellulose, the preparation of cellulose-metal oxide hybrid nanocomposites using a dispersion process of nanoparticles into the cellulose host matrix by traditional methods, has limitations. Recently, the functionalized cellulose-polymer-based materials were considered to be an important class of high-performance materials, providing the synthesis of various functional hybrid nanocomposites using a sol-gel method. Transparent cellulose-POSS-amine-silica/titania hybrids were prepared by an in-situ sol-gel process in the presence of γ-aminopropyltrimethoxylsilane (γ-APTES). The methodology involves the formation of covalent bonding between the cellulose-POSS amine and SiO2/TiO2 hybrid nanocomposite material. An analysis of the synthesized hybrid material by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, differential thermal calorimetry, scanning electron microscopy, and transmission electron microscopy indicated that the silica/titania nanoparticles were bonded covalently and dispersed uniformly into the cellulose-POSS amine matrix. In addition, biological properties of the cellulose-POSS-silica/titania hybrid material were examined using an antimicrobial test against pathogenic bacteria, such as Bacillus cereus (F481072) and E. coli (ATCC35150) for the bacterial effect.


Assuntos
Antibacterianos , Celulose , Nanocompostos/química , Compostos de Organossilício , Dióxido de Silício , Titânio , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus cereus/crescimento & desenvolvimento , Celulose/química , Celulose/farmacologia , Escherichia coli/crescimento & desenvolvimento , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Titânio/química , Titânio/farmacologia
2.
Water Res ; 233: 119771, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842328

RESUMO

Considering the increasing demand for desalination plants and their byproduct brine, this study investigated a humidification-dehumidification (HDH) system for treating membrane distillation-generated real high-salinity brine using low-grade heat (45-70 ℃) to explore its feasibility for sustainable energy-efficient minimal liquid discharge. A novel super-hydrophilic fabric was adopted for accelerated humidification, and its impact on brine droplet miscarriage characteristics was evaluated. The influence of the operating fluid thermal properties (cycle 1: air preheating; cycle 2: air and brine dual-fluid preheating; and cycle 3: air post-heating after humidification) on the brine treatment efficiency, energy consumption, and chemical quality of freshwater produced was analyzed in detail to establish their characteristic nexus. It was identified that, during humidification, increasing the brine temperature (up to 55 ℃) influenced its ionic mobility, thereby promoting efficient separation of the salts/minerals and contributing to achieving better freshwater quality. Furthermore, although cycle 3 exhibited improved system thermal efficiency (gained output ratio equal to 1.77), its non-preheated air contributed to a negative effect of the reduced humidity ratio (∼17 g/kg), leading to a lower freshwater productivity of 67% than that of cycle 2 (29 g/kg and 70%). The present study also illustrates a novel effect of evaporative deposition occurring due to air-water interaction on the fabric humidifier surface, with an exploration of its effect on reducing freshwater chemical quality. The freshwater generated from optimum thermal cycle 2 exhibited reduced pH (by ∼63%), sodium (99.9%), chloride (99.9%), toxic boron (99.7%), and other chemical contaminants, thereby satisfying the major international water reuse standards.


Assuntos
Sais , Purificação da Água , Temperatura Alta , Água , Água Doce
3.
Water Res ; 229: 119407, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462260

RESUMO

This study provides a comprehensive and systematic overview of the application of gas-liquid two-phase flow with microbubbles in the feed stream to improve heat and mass transfer in direct-contact membrane distillation (DCMD) processes for seawater desalination. A swirl-flow-type microbubble generator (MBG) was installed at the feed-side inlet of the DCMD module to investigate its effect on transmembrane flux. The maximum improvement in the MBG-assisted DCMD permeation flux was found to be approximately 18% at a lower feed temperature (40 °C) and optimal air flow rate (50 cc/min), and an optimal MBG geometry comprising a swirler, a nozzle tip of diameter 2 mm, and a diffuser at an angle of 30°. The results were observed to be related to the number density of microbubbles less than 100 µm in size, which plays an important role in improving heat and mass transfer in two-phase flow. In addition, the simulation results based on conventional heat transfer correlations of bubbly flow underestimated the experimental results. Therefore, this study also aims to propose and verify a new two-phase flow heat transfer correlation. The proposed correlation considers the effects of bubble size distribution to accurately predict the performance of MBG-assisted DCMD processes.


Assuntos
Microbolhas , Purificação da Água , Destilação/métodos , Membranas Artificiais , Temperatura , Purificação da Água/métodos
4.
J Nanosci Nanotechnol ; 15(10): 7522-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26726363

RESUMO

Thin film transparent oxides have attracted considerable attention over the last few decades for transparent electronic applications, such as flat panel displays, solar cells, touch-pads, and mobile devices. Metallic doped InZnO (IZO) films have been suggested for the transparent layer exhibiting semiconducting or metallic properties because of its controllable mobility and excellent electrical properties, but they show a degradation of the electrical performance under bending conditions. This study assessed Ni doped IZO (NIZO) films as a flexible transparent electrode on different flexible transparent substrates for flexible electronic applications. Thin NIZO films were deposited on cellulose, PES and glass substrates using a sputtering system with a single NIZO target (In2O3 73.8/ZnO 15.7/NiO 10.5 mol.%) at room temperature. During deposition of the NIZO films, the total flow rate of the carrier gas was maintained using a regulating system. The effects of the oxygen content in the carrier gas on the structural, electrical and optical properties of the thin films deposited on flexible substrates was characterized. The results highlight the feasibility of the transparent NIZO oxide layer on flexible substrates as a flexible electrode with a relatively high sheet resistance, which is strongly related to the crystallographic structure and oxygen content during the film deposition process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA