Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Immunol ; 206(9): 2221-2232, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33863790

RESUMO

In both humans and mice, CTCF-binding elements form a series of interacting loops across the MHC class II (MHC-II) locus, and CTCF is required for maximal MHC-II gene expression. In humans, a CTCF-bound chromatin insulator termed XL9 and a super enhancer (SE) DR/DQ-SE situated in the intergenic region between HLA-DRB1 and HLA-DQA1 play critical roles in regulating MHC-II expression. In this study, we identify a similar SE, termed IA/IE-SE, located between H2-Eb1 and H2-Aa of the mouse that contains a CTCF site (C15) and a novel region of high histone H3K27 acetylation. A genetic knockout of C15 was created and its role on MHC-II expression tested on immune cells. We found that C15 deletion did not alter MHC-II expression in B cells, macrophages, and macrophages treated with IFN-γ because of functional redundancy of the remaining MHC-II CTCF sites. Surprisingly, embryonic fibroblasts derived from C15-deleted mice failed to induce MHC-II gene expression in response to IFN-γ, suggesting that at least in this developmental lineage, C15 was required. Examination of the three-dimensional interactions with C15 and the H2-Eb1 and H2-Aa promoters identified interactions within the novel region of high histone acetylation within the IA/IE-SE (termed N1) that contains a PU.1 binding site. CRISPR/Cas9 deletion of N1 altered chromatin interactions across the locus and resulted in reduced MHC-II expression. Together, these data demonstrate the functional redundancy of the MHC-II CTCF elements and identify a functionally conserved SE that is critical for maximal expression of MHC-II genes.


Assuntos
Fator de Ligação a CCCTC/genética , Genes MHC da Classe II/genética , Cadeias alfa de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Animais , Fator de Ligação a CCCTC/imunologia , Genes MHC da Classe II/imunologia , Cadeias alfa de HLA-DQ/imunologia , Cadeias HLA-DRB1/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
J Vis ; 22(8): 18, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35904797

RESUMO

Research in perception and attention has typically sought to evaluate cognitive mechanisms according to the average response to a manipulation. Recently, there has been a shift toward appreciating the value of individual differences and the insight gained by exploring the impacts of between-participant variation on human cognition. However, a recent study suggests that many robust, well-established cognitive control tasks suffer from surprisingly low levels of test-retest reliability (Hedge, Powell, & Sumner, 2018b). We tested a large sample of undergraduate students (n = 160) in two sessions (separated by 1-3 weeks) on four commonly used tasks in vision science. We implemented measures that spanned a range of perceptual and attentional processes, including motion coherence (MoCo), useful field of view (UFOV), multiple-object tracking (MOT), and visual working memory (VWM). Intraclass correlations ranged from good to poor, suggesting that some task measures are more suitable for assessing individual differences than others. VWM capacity (intraclass correlation coefficient [ICC] = 0.77), MoCo threshold (ICC = 0.60), UFOV middle accuracy (ICC = 0.60), and UFOV outer accuracy (ICC = 0.74) showed good-to-excellent reliability. Other measures, namely the maximum number of items tracked in MOT (ICC = 0.41) and UFOV number accuracy (ICC = 0.48), showed moderate reliability; the MOT threshold (ICC = 0.36) and UFOV inner accuracy (ICC = 0.30) showed poor reliability. In this paper, we present these results alongside a summary of reliabilities estimated previously for other vision science tasks. We then offer useful recommendations for evaluating test-retest reliability when considering a task for use in evaluating individual differences.


Assuntos
Atenção , Visão Ocular , Cognição/fisiologia , Humanos , Memória de Curto Prazo , Reprodutibilidade dos Testes
3.
J Immunol ; 198(1): 205-217, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27895178

RESUMO

Expression of programmed death 1 (PD-1) on CD8 T cells promotes T cell exhaustion during chronic Ag exposure. During acute infections, PD-1 is transiently expressed and has the potential to modulate CD8 T cell memory formation. Conserved region C (CR-C), a promoter proximal cis-regulatory element that is critical to PD-1 expression in vitro, responds to NFATc1, FoxO1, and/or NF-κB signaling pathways. Here, a CR-C knockout mouse was established to determine its role on PD-1 expression and the corresponding effects on T cell function in vivo. Deletion of CR-C decreased PD-1 expression on CD4 T cells and Ag-specific CD8 T cells during acute and chronic lymphocytic choriomeningitis virus challenges, but did not affect the ability to clear an infection. Following acute lymphocytic choriomeningitis virus infection, memory CD8 T cells in the CR-C knockout mouse were formed in greater numbers, were more functional, and were more effective at responding to a melanoma tumor than wild-type memory cells. These data implicate a critical role for CR-C in governing PD-1 expression, and a subsequent role in guiding CD8 T cell differentiation. The data suggest the possibility that titrating PD-1 expression during CD8 T cell activation could have important ramifications in vaccine development and clinical care.


Assuntos
Linfócitos T CD8-Positivos/citologia , Regulação da Expressão Gênica/imunologia , Memória Imunológica/imunologia , Receptor de Morte Celular Programada 1/imunologia , Regiões Promotoras Genéticas/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Citometria de Fluxo , Memória Imunológica/genética , Coriomeningite Linfocítica/imunologia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/biossíntese , Receptor de Morte Celular Programada 1/genética , Reação em Cadeia da Polimerase em Tempo Real
4.
J Exp Med ; 217(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31753848

RESUMO

Super enhancers (SEs) play critical roles in cell type-specific gene regulation. The mechanisms by which such elements work are largely unknown. Two SEs termed DR/DQ-SE and XL9-SE are situated within the human MHC class II locus between the HLA-DRB1 and HLA-DQA1 genes and are highly enriched for disease-causing SNPs. To test the function of these elements, we used CRISPR/Cas9 to generate a series of mutants that deleted the SE. Deletion of DR/DQ-SE resulted in reduced expression of HLA-DRB1 and HLA-DQA1 genes. The SEs were found to interact with each other and the promoters of HLA-DRB1 and HLA-DQA1. DR/DQ-SE also interacted with neighboring CTCF binding sites. Importantly, deletion of DR/DQ-SE reduced the local chromatin interactions, implying that it functions as the organizer for the local three-dimensional architecture. These data provide direct mechanisms by which an MHC-II SE contributes to expression of the locus and suggest how variation in these SEs may contribute to human disease and altered immunity.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/metabolismo , Genes MHC da Classe II/genética , Cadeias alfa de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Linfócitos B , Sítios de Ligação/genética , Doadores de Sangue , Linfoma de Burkitt/patologia , Fator de Ligação a CCCTC/metabolismo , Linfócitos T CD4-Positivos , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Deleção de Genes , Loci Gênicos , Cadeias alfa de HLA-DQ/metabolismo , Cadeias HLA-DRB1/metabolismo , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética
5.
J Biol Chem ; 280(5): 3946-53, 2005 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-15556947

RESUMO

Double-stranded RNA induces the homology-dependent degradation of cognate mRNA in the cytoplasm via RNA interference (RNAi) but also is a target for adenosine-to-inosine (A-to-I) RNA editing by adenosine deaminases acting on RNA (ADARs). An interaction between the RNAi and the RNA editing pathways in Caenorhabditis elegans has been suggested recently, but the precise mode of interaction remains to be established. In addition, it is unclear whether this interaction is possible in mammalian cells with their somewhat different RNAi pathways. Here we show that ADAR1 and ADAR2, but not ADAR3, avidly bind short interfering RNA (siRNA) without RNA editing. In particular, the cytoplasmic full-length isoform of ADAR1 has the highest affinity among known ADARs, with a subnanomolar dissociation constant. Gene silencing by siRNA is significantly more effective in mouse fibroblasts homozygous for an ADAR1 null mutation than in wild-type cells. In addition, suppression of RNAi effects are detected in fibroblast cells overexpressing functional ADAR1 but not when overexpressing mutant ADAR1 lacking double-stranded RNA-binding domains. These results identify ADAR1 as a cellular factor that limits the efficacy of siRNA in mammalian cells.


Assuntos
Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Células Cultivadas , Fibroblastos/citologia , Expressão Gênica , Inativação Gênica/fisiologia , Mamíferos , Camundongos , Ligação Proteica/genética , Edição de RNA/fisiologia , Proteínas de Ligação a RNA
6.
J Biol Chem ; 278(19): 17093-102, 2003 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-12618436

RESUMO

Adenosine deaminases acting on RNA (ADAR) convert adenosine residues into inosines in double-stranded RNA. Three vertebrate ADAR gene family members, ADAR1, ADAR2, and ADAR3, have been identified. The catalytic domain of all three ADAR gene family members is very similar to that of Escherichia coli cytidine deaminase and APOBEC-1. Homodimerization is essential for the enzyme activity of those cytidine deaminases. In this study, we investigated the formation of complexes between differentially epitope-tagged ADAR monomers by sequential affinity chromatography and size exclusion column chromatography. Both ADAR1 and ADAR2 form a stable enzymatically active homodimer complex, whereas ADAR3 remains as a monomeric, enzymatically inactive form. No heterodimer complex formation among different ADAR gene family members was detected. Analysis of HeLa and mouse brain nuclear extracts suggested that endogenous ADAR1 and ADAR2 both form a homodimer complex. Interestingly, endogenous ADAR3 also appears to form a homodimer complex, indicating the presence of a brain-specific mechanism for ADAR3 dimerization. Homodimer formation may be necessary for ADAR to act as active deaminases. Analysis of dimer complexes consisting of one wild-type and one mutant monomer suggests functional interactions between the two subunits during site-selective RNA editing.


Assuntos
Adenosina Desaminase , Edição de RNA , Adenosina Desaminase/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Dimerização , Escherichia coli , Células HeLa , Humanos , Camundongos , RNA/genética , RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA