Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Mol Cell Neurosci ; 64: 24-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25433167

RESUMO

PTP69D is a receptor protein tyrosine phosphatase (RPTP) with two intracellular catalytic domains (Cat1 and Cat2) and has been shown to play a role in axon guidance of embryonic motoneurons as well as targeting of photoreceptor neurons in the visual system of Drosophila melanogaster. Here, we characterized the developmental role of PTP69D in the giant fiber (GF) neurons, two interneurons in the central nervous system (CNS) that control the escape response of the fly. Our studies revealed that PTP69D has a function in synaptic terminal growth in the CNS. We found that missense mutations in the first immunoglobulin (Ig) domain and in the Cat1 domain, present in Ptp69D10 and Ptp69D20 mutants, respectively, did not affect axon guidance or targeting but resulted in stunted terminal growth of the GFs. Cell autonomous rescue experiments demonstrated a function for the Cat1 and the first Ig domain of PTP69D in the GFs but not in its postsynaptic target neurons. In addition, complementation studies and structure-function analyses revealed that for GF terminal growth Cat1 function of PTP69D requires the immunoglobulin and the Cat2 domains, but not the fibronectin III or the membrane proximal region domains. In contrast, the fibronectin III but not the immunoglobulin domains were previously shown to be essential for axon targeting of photoreceptor neurons. Thus, our studies uncover a novel role for PTP69D in synaptic terminal growth in the CNS that is mechanistically distinct from its function in photoreceptor targeting.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurogênese , Terminações Pré-Sinápticas/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Animais , Domínio Catalítico , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Fibronectinas/metabolismo , Mutação de Sentido Incorreto , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética
3.
Neurobiol Dis ; 68: 180-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24807208

RESUMO

Aminoacyl-tRNA synthetases are ubiquitously expressed proteins that charge tRNAs with their cognate amino acids. By ensuring the fidelity of protein synthesis, these enzymes are essential for the viability of every cell. Yet, mutations in six tRNA synthetases specifically affect the peripheral nerves and cause Charcot-Marie-Tooth (CMT) disease. The CMT-causing mutations in tyrosyl- and glycyl-tRNA synthetases (YARS and GARS, respectively) alter the activity of the proteins in a range of ways (some mutations do not impact charging function, while others abrogate it), making a loss of function in tRNA charging unlikely to be the cause of disease pathology. It is currently unknown which cellular mechanisms are triggered by the mutant enzymes and how this leads to neurodegeneration. Here, by expressing two pathogenic mutations (G240R, P234KY) in Drosophila, we generated a model for GARS-associated neuropathy. We observed compromised viability, and behavioral, electrophysiological and morphological impairment in flies expressing the cytoplasmic isoform of mutant GARS. Their features recapitulated several hallmarks of CMT pathophysiology and were similar to the phenotypes identified in our previously described Drosophila model of YARS-associated neuropathy. Furthermore, CG8316 and CG15599 - genes identified in a retinal degeneration screen to modify mutant YARS, also modified the mutant GARS phenotypes. Our study presents genetic evidence for common mutant-specific interactions between two CMT-associated aminoacyl-tRNA synthetases, lending support for a shared mechanism responsible for the synthetase-induced peripheral neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/genética , Glicina-tRNA Ligase/genética , Mutação/genética , Doenças do Sistema Nervoso Periférico/etiologia , Tirosina-tRNA Ligase/genética , Animais , Animais Geneticamente Modificados , Doença de Charcot-Marie-Tooth/patologia , Dextranos , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Humanos , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Fibras Nervosas/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Doenças do Sistema Nervoso Periférico/genética , Retina/patologia , Retina/ultraestrutura , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/etiologia , Degeneração Retiniana/genética , Rodaminas , Asas de Animais/patologia , Asas de Animais/ultraestrutura
4.
Blood Adv ; 5(23): 5323-5331, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34543385

RESUMO

Sickle cell disease (SCD) is the most common inherited red blood cell disorder in the United States, affecting 70 000 to 100 000 Americans and causing a range of serious medical complications. Although the cause of SCD was established decades ago, existing therapies have varied effectiveness and side effects, and development of novel therapies has been slow. The limitations of existing treatment options highlight the need for new therapies that are aligned with the desires of the community. To date, little has been done to systematically seek and report the opinions and experiences of people with SCD regarding clinical research. In 2019, the American Society of Hematology Research Collaborative conducted 8 community workshops across the United States engaging 472 people, including persons with SCD and caregivers of those living with the disease. The workshop goals included assessing understanding, awareness, and perceptions of clinical research; and identifying the most critical clinical trial considerations of this community. Participants were asked about their experiences living with SCD and their satisfaction with treatment options. Pain and fatigue were reported as symptoms requiring better therapies. Although few participants reported being asked to enroll in a clinical trial, they expressed conditional willingness to participate. A majority were willing to share personal health information to further research and improve health outcomes. To actively engage the SCD community and increase enrollment and retention in clinical trials, researchers should address the treatment priorities of this population and ensure they have access to trusted information about clinical research and opportunities for participation.


Assuntos
Anemia Falciforme , Anemia Falciforme/terapia , Humanos , Estados Unidos
5.
PLoS One ; 12(8): e0183605, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837701

RESUMO

Here, we established the Drosophila Giant Fiber neurons (GF) as a novel model to study axonal trafficking of L1-type Cell Adhesion Molecules (CAM) Neuroglian (Nrg) in the adult CNS using live imaging. L1-type CAMs are well known for their importance in nervous system development and we previously demonstrated a role for Nrg in GF synapse formation. However, in the adult they have also been implicated in synaptic plasticity and regeneration. In addition, to its canonical role in organizing cytoskeletal elements at the plasma membrane, vertebrate L1CAM has also been shown to regulate transcription indirectly as well as directly via its import to the nucleus. Here, we intend to determine if the sole L1CAM homolog Nrg is retrogradley transported and thus has the potential to relay signals from the synapse to the soma. Live imaging of c-terminally tagged Nrg in the GF revealed that there are at least two populations of retrograde vesicles that differ in speed, and either move with consistent or varying velocity. To determine if endogenous Nrg is retrogradely transported, we inhibited two key regulators, Lissencephaly-1 (Lis1) and Dynactin, of the retrograde motor protein Dynein. Similar to previously described phenotypes for expression of poisonous subunits of Dynactin, we found that developmental knock down of Lis1 disrupted GF synaptic terminal growth and that Nrg vesicles accumulated inside the stunted terminals in both mutant backgrounds. Moreover, post mitotic Lis1 knock down in mature GFs by either RNAi or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) induced mutations, resulted in normal length terminals with fully functional GF synapses which also exhibited severe accumulation of endogenous Nrg vesicles. Thus, our data suggests that accumulation of Nrg vesicles is due to failure of retrograde transport rather than a failure of terminal development. Together with the finding that post mitotic knock down of Lis1 also disrupted retrograde transport of tagged Nrg vesicles in GF axons, it demonstrates that endogenous Nrg protein is transported from the synapse to the soma in the adult central nervous system in a Lis1-dependent manner.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Animais , Transporte Biológico , Moléculas de Adesão Celular Neuronais/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Drosophila/genética , Técnicas de Silenciamento de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA