RESUMO
This study is the first to identify bovine blastocysts through in vitro fertilization (IVF) of matured oocytes with a large quantity of high-quality sperm separated from a biomimetic cervix environment. We obtained high-quality sperm in large quantities using an IVF sperm sorting chip (SSC), which could mimic the viscous environment of the bovine cervix during ovulation and facilitates isolation of progressively motile sperm from semen. The viscous environment-on-a-chip was realized by formulating and implementing polyvinylpyrrolidone (PVP)-based solutions for the SSC medium. Sperm separated from the IVF-SSC containing PVP 1.5% showed high motility, normal morphology and high DNA integrity. As a result of IVF, a higher rate of hatching blastocysts, which is the pre-implantation stage, were observed, compared to the conventional swim-up method. Our results may significantly contribute to improving livestock with superior male and female genetic traits, thus overcoming the limitation of artificial insemination based on the superior genetic traits of existing males.
Assuntos
Desenvolvimento Embrionário , Fertilização in vitro , Espermatozoides , Animais , Bovinos , Masculino , Espermatozoides/citologia , Espermatozoides/química , Feminino , Fertilização in vitro/métodos , Desenvolvimento Embrionário/fisiologia , Biomimética/métodos , Colo do Útero/citologia , Povidona/química , Blastocisto/citologia , Motilidade dos Espermatozoides/efeitos dos fármacosRESUMO
Organoid cryopreservation method is one of key step in the organoid culture. We aimed to establish a simple and efficient cryopreservation method for mouse small intestinal organoids (MIOs) and colon organoids (MCOs) using various concentrations of cryoprotectant. Based on the theoretical simulation, we optimized the dimethyl sulfoxide (DMSO) concentration by pretreating the organoids with 5, 7.5, and 10% DMSO for 30 min at 4 °C to allow penetration into the organoids and evaluated their viability, proliferation, and function after cryopreservation. Gene expression in the MIOs and staining of lineage markers were examined real-time PCR. The organoids in the DMSO-treated groups as well as the control, expressed ChrgA, Ecad, Muc2, Lyz, villin, and Lgr5, and there are no significant. A forskolin-induced swelling assay for MIOs was performed to confirm normal cystic fibrosis transmembrane conductance regulator (CFTR) activity. Similar forskolin-induced swelling was observed in the DMSO-treated groups and the control. In addition, MCOs were transplanted into mouse colon for confirmation of regeneration therapy efficacy. Thawing organoids were cultured for two and four sequential passages after cryopreservation with 5% DMSO to confirm any changes in the gene expression of lineage markers after subculture. We developed a simple and efficient organoid freezing method using 5% DMSO with low potential toxicity and validated our findings with theoretical simulation.
Assuntos
Colo/metabolismo , Criopreservação/métodos , Intestino Delgado/metabolismo , Organoides/metabolismo , Medicina Regenerativa/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Crioprotetores/metabolismo , Crioprotetores/farmacologia , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Expressão Gênica/efeitos dos fármacos , Camundongos , Organoides/citologia , Organoides/efeitos dos fármacos , Fatores de TempoRESUMO
Ionic liquids (ILs) are emerging as novel solvents that exhibit peculiar mechanical properties in the form of thin films on metal surfaces under normal pressure. However, the mechanical properties of ILs in the form of nano-meniscus have not been analyzed yet. Here, we investigate the shear viscoelasticity of a single IL meniscus at the nanoscale. To characterize the shear rheological properties of ILs, we employ a quartz tuning fork-based atomic force microscope, conduct dynamic force spectroscopy, and analyse shear properties using the non-Newtonian-Maxwell model. The elastic response of the IL nanomeniscus is found to be about 25 times higher than that of the bulk IL bridge, whereas the viscous responses are similar. In addition, by conducting shear velocity-dependent measurements, we find that the IL meniscus shows nonlinear rheological behaviours. Interestingly, we observe that the relaxation time of the IL increases at a tip-substrate distance of about 60 nm.
RESUMO
Buckling, first introduced by Euler in 1744 [Euler L (1744) Opera Omnia I 24:231], a sudden mechanical sideways deflection of a structural member under compressive stress, represents a bifurcation in the solution to the equations of static equilibrium. Although it has been investigated in diverse research areas, such a common nonlinear phenomenon may be useful to devise a unique mechanical sensor that addresses the still-challenging features, such as the enhanced sensitivity and polarization-dependent detection capability. We demonstrate the bifurcation-enhanced sensitive measurement of mechanical vibrations using the nonlinear buckled cantilever tip in ambient conditions. The cantilever, initially buckled with its tip pinned, flips its buckling near the bifurcation point (BP), where the buckled tip becomes softened. The enhanced mechanical sensitivity results from the increasing fluctuations, unlike the typical linear sensors, which facilitate the noise-induced buckling-to-flipping transition of the softened cantilever. This allows the in situ continuous or repeated single-shot detection of the surface acoustic waves of different polarizations without any noticeable wear of the tip. We obtained the sensitivity above 106 V(m/s)-1, a 1,000-fold enhancement over the conventional seismometers. Our results lead to development of mechanical sensors of high sensitivity, reproducibility, and durability, which may be applied to detect, e.g., the directional surface waves on the laboratory as well as the geological scale.
RESUMO
As transmissions of data between mobile and embedded devices in multi-access edge computing (MEC) increase, data must be protected, ensuring confidentiality and integrity. These issues are usually solved with cryptographic algorithms systems, which utilize a random number generator to create seeds and keys randomly. Their role in cryptography is so important that they need to be generated securely. In this paper, a true random number generator (TRNG) utilizing FM radio signals as a source is proposed. The proposed method can generate random numbers with high entropy, increased by at least 118% and up to 431% compared to existing generators.
RESUMO
A quartz tuning fork and its qPlus configuration show different characteristics in their dynamic features, including peak amplitude, resonance frequency, and quality factor. Here, we present an electromechanical model that comprehensively describes the dynamic responses of an electrically driven tuning fork and its qPlus configuration. Based on the model, we theoretically derive and experimentally validate how the peak amplitude, resonance frequency, quality factor, and normalized capacitance are changed when transforming a tuning fork to its qPlus configuration. Furthermore, we introduce two experimentally measurable parameters that are intrinsic for a given tuning fork and not changed by the qPlus configuration. The present model and analysis allow quantitative prediction of the dynamic characteristics in tuning fork and qPlus, and thus could be useful to optimize the sensors' performance.
RESUMO
OBJECTIVE: To isolate and identify new methanogens from the rumen of Holstein steers in Korea. METHODS: Representative rumen contents were obtained from three ruminally cannulated Holstein steers (793±8 kg). Pre-reduced media were used for the growth and isolation of methanogens. Optimum growth temperature, pH, and sodium chloride (NaCl) concentration as well as substrate utilization and antibiotic tolerance were investigated to determine the physiological characteristics of the isolated strain. Furthermore, the isolate was microscopically studied for its morphology. Polymerase chain reaction of 16S rRNA and mcrA gene-based amplicons was used for identification. RESULTS: One strain designated as KOR-2 was isolated and found to be a non-motile irregular coccus with a diameter of 0.2 to 0.5 µm. KOR-2 utilized H2+CO2 and formate but was unable to metabolize acetate, methanol, trimethylamine, 2-propanol, and isobutanol for growth and methane production. The optimum temperature and pH for the growth of KOR-2 were 38°C and 6.8 to 7.0, respectively, while the optimum NaCl concentration essential for KOR-2 growth was 1.0% (w/v). KOR-2 tolerated ampicillin, penicillin G, kanamycin, spectromycin, and tetracycline. In contrast, the cell growth was inhibited by chloramphenicol. Phylogenetic analysis of 16S rRNA and mcrA genes revealed the relatedness between KOR-2 and Methanoculleus bourgensis. CONCLUSION: Based on the physiological and phylogenetic characteristics, KOR-2 was thought to be a new strain within the genus Methanoculleus and named Methanoculleus bourgensis KOR-2.
RESUMO
Viscoelastic fluids exhibit rheological nonlinearity at a high shear rate. Although typical nonlinear effects, shear thinning and shear thickening, have been usually understood by variation of intrinsic quantities such as viscosity, one still requires a better understanding of the microscopic origins, currently under debate, especially on the shear-thickening mechanism. We present accurate measurements of shear stress in the bound hydration water layer using noncontact dynamic force microscopy. We find shear thickening occurs above â¼ 10(6) s(-1) shear rate beyond 0.3-nm layer thickness, which is attributed to the nonviscous, elasticity-associated fluidic instability via fluctuation correlation. Such a nonlinear fluidic transition is observed due to the long relaxation time (â¼ 10(-6) s) of water available in the nanoconfined hydration layer, which indicates the onset of elastic turbulence at nanoscale, elucidating the interplay between relaxation and shear motion, which also indicates the onset of elastic turbulence at nanoscale above a universal shear velocity of â¼ 1 mm/s. This extensive layer-by-layer control paves the way for fundamental studies of nonlinear nanorheology and nanoscale hydrodynamics, as well as provides novel insights on viscoelastic dynamics of interfacial water.
RESUMO
Mechanical sensors provide core keys for high-end research in quantitative understanding of fundamental phenomena and practical applications such as the force or pressure sensor, accelerometer and gyroscope. In particular, in situ sensitive and reliable detection is essential for measurements of the mechanical vibration and displacement forces in inertial sensors or seismometers. However, enhancing sensitivity, reducing response time and equipping sensors with a measurement capability of bidirectional mechanical perturbations remains challenging. Here, we demonstrate the buckling cantilever-based non-linear dynamic mechanical sensor which addresses intrinsic limitations associated with high sensitivity, reliability and durability. The cantilever is attached on to a high-Q tuning fork and initially buckled by being pressed against a solid surface while a flexural stress is applied. Then, buckling instability occurs near the bifurcation region due to lateral movement, which allows high-sensitive detection of the lateral and perpendicular surface acoustic waves with bandwidth-limited temporal response of less than 1 ms.
RESUMO
The viscometry of minute amounts of liquid has been in high demand as a novel tool for medical diagnosis and biological assays. Various microrheological techniques have shown the capability to handle small volumes. However, as the liquid volume decreases down to nanoliter scale, increasingly dominant surface effects complicate the measurement and analysis, which remain a challenge in microrheology. Here, we demonstrate an atomic force microscope-based platform that determines the viscosity of single sessile drops of 1 nanoliter Newtonian fluids. We circumvent interfacial effects by measuring the negative-valued shear elasticity, originating from the retarded fluidic response inside the drop. Our measurement is independent of the liquid-boundary effects, and thus is valid without a priori knowledge of surface tension or contact angle, and consistently holds at a 1 milliliter-scale volume. Importantly, while previous methods typically need a much larger 'unrecoverable' volume above 1 microliter, our simple platform uses only â¼1 nanoliter. Our results offer a quantitative and unambiguous methodology for viscosity measurements of extremely minute volumes of Newtonian liquids on the nanoliter scale.
RESUMO
Rheological characteristics exhibit significant variations at nanoscale confinement or near interfaces, compared to bulk rheological properties. To bridge the gap between nano- and bulk-scale rheology, allowing for a better and holistic understanding of rheology, developing a single experimental platform that provides rheological measurements across different scales, from nano to bulk, is desirable. Here, we present the novel methodology for multiscale rheology using a highly sensitive atomic force microscope based on a quartz tuning fork (QTF) force sensor. We employ microscale and nanoscale shear probes attached to the QTF, oscillating parallel to a substrate surface for rheological measurements as a function of the tip-substrate distance with sub-nanometer resolution. Silicone oils with viscosities ranging from 5 cSt to 10 000 cSt are used as calibration samples, and we have successfully derived the bulk rheological moduli. Furthermore, an increase in modulus is observed within the regime of tribo-nanorheology at distances less than 50 nm from the surface. Through such multiscale measurements, it is confirmed that this increase is due to the formation of a layered structure of silicone oil polymers on the solid surface. These results provide a comprehensive understanding of the tribo-rheological properties of complex fluids across different scales.
RESUMO
We present the general stress tensor of the ubiquitous hydration water layer (HWL), based on the empirical hydration force, by combining the elasticity and hydrodynamics theories. The tapping and shear component of the tensor describe the elastic and damping properties of the HWL, respectively, in good agreement with experiments. In particular, a unified understanding of HWL dynamics provides the otherwise unavailable intrinsic parameters of the HWL, which offer additional but unexplored aspects to the supercooled liquidity of the confined HWL. Our results may allow deeper insight on systems where the HWL is critical.
RESUMO
The use of scientific instruments generally requires prior knowledge and skill on the part of operators, and thus, the obtained results often vary with different operators. The autonomous operation of instruments producing reproducible and reliable results with little or no operator-to-operator variation could be of considerable benefit. Here, we demonstrate the autonomous operation of an atomic force microscope using a machine learning-based object detection technique. The developed atomic force microscope was able to autonomously perform instrument initialization, surface imaging, and image analysis. Two cameras were employed, and a machine-learning algorithm of region-based convolutional neural networks was implemented, to detect and recognize objects of interest and to perform self-calibration, alignment, and operation of each part of the instrument, as well as the analysis of obtained images. Our machine learning-based approach could be generalized to apply to various types of scanning probe microscopes and other scientific instruments.
RESUMO
We analytically show that the interfacial fluid's molecular dynamics of capillary bridges induces both elastic and dissipative forces to the shearing plane. Surprisingly, the nanometer-sized, liquid-solid contact line of the bridges exerts a giant "shear" force on the solid surface, which is 10^{5} higher than the usual viscous interaction and comparable to that of solid-solid direct-contact friction. These results are consistent with previously reported experimental data and may provide clues to longstanding questions on the apparent viscosity of the nanoconfined fluids.
RESUMO
The accurate measurement of nanoscale mechanical characteristics is crucial in the emerging field of soft condensed matter for industrial applications. An atomic force microscope (AFM) can be used to conduct nanoscale evaluation of the Young's modulus on the target surface based on site-specific force spectroscopy. However, there is still a lack of well-organized study about the nanomechanical interpretation model dependence along with cantilever stiffness and radius of the tip apex for the Young's modulus measurement on the soft materials. Here, we present the fast and accurate measurement of the Young's modulus of a sample's entire scan surface using the AFM in a newly developed PinPointTM nanomechanical mode. This approach enables simultaneous measurements of topographical data and force-distance data at each pixel within the scan area, from which quantitative visualization of the pixel-by-pixel topographical height and Young's modulus of the entire scan surface was realized. We examined several models of contact mechanics and showed that cantilevers with proper mechanical characteristics such as stiffness and tip radius can be used with the PinPointTM mode to accurately evaluate the Young's modulus depending on the sample type.
RESUMO
When ejaculated sperm travels through the vagina to the uterus, mucus secreted by the cervical canal generally filters out sperm having low motility and poor morphology. To investigate this selection principle in vivo, we developed a microfluidic sperm-sorting chip with a viscous medium (polyvinylpyrrolidone: PVP) to imitate the biophysical environment mimic system of the human cervical canal. The material property of the PVP solution was tuned to the range of viscosities of cervical mucus using micro-viscometry. The selection of high-quality human sperm was experimentally evaluated in vitro and theoretically analyzed by the convection-diffusion mechanism. The convection flow is shown to be dominant at low viscosity of the medium used in the sperm-sorting chip when seeded with raw semen; hence, the raw semen containing sperm and debris convectively flow together with suppressed relative dispersions. Also, it was observed that the sperm selected via the chip not only had high motilities but also normal morphologies and high DNA integrity. Therefore, the biomimetic sperm-sorting chip with PVP medium is expected to improve male fertility by enabling the selection of high-quality sperm as well as uncovering pathways and regulatory mechanisms involved in sperm transport through the female reproductive tract for egg fertilization.
RESUMO
In the chemical mechanical polishing process of semiconductor manufacturing, the concentration of 'large' particles ([Formula: see text]0.5 µm) in the slurry, which is considerably larger in size than the main abrasives ([Formula: see text] 0.1 µm), is a critical parameter that strongly influences manufacturing defects, yields, and reliabilities of large-scale-integrated circuits. Various instruments, so-called particle counters, based on light scattering, light extinction, and holography techniques have been developed to measure and monitor the large particle concentration in semiconductor fabs in real time. However, sizeable fluctuation in the measured particle concentration complicates the statistical process control in the fabs worldwide. Here, we show that an inherent fluctuation exists in the counting of large particles, which is universal, independent of instrument type, and quantitatively determined by the instrument's operation parameters. We analytically derive a statistical theory of the fluctuation based on Poisson statistics and validate the theory through experiments and Monte-Carlo simulation. Furthermore, we provide a strategy to enhance the measurement accuracy by statistically adjusting the instrumental parameters commonly involved in the particle counters. The present results and analyses could be useful for statistical process control in semiconductor fabs to prevent large particle-induced defects such as micro-scratches and pits on wafers.
RESUMO
We theoretically investigate the nonlinear behavior of a buckled tip near the bifurcation point under external stress. We present a mechanical model for the buckled tip and derive the governing equation that describes the "buckling-to-flipping" nonlinear transition of the tip motion. Our minimal mechanistic model fully captures the velocity-dependent flipping phenomena, in which the flip position of the tip varies with the speed of the surface motion, as consistently observed in previous experiments. The present study could be applicable for sensitive detection of directional surface motion such as seismic waves.
RESUMO
Liposarcoma of the spermatic cord is extremely rare in dogs and humans. This report describes the clinical signs, typical diagnostic imaging including ultrasound and computed tomography, and treatment of a liposarcoma of the spermatic cord of a Toy Poodle confirmed by histological examination after a surgical procedure. This case highlights the importance of preoperative diagnostic imaging and histopathological examination in dogs with an inguinal or scrotal mass.