Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G593-G607, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873588

RESUMO

Metal transporter SLC39A14/ZIP14 is localized on the basolateral side of the intestine, functioning to transport metals from blood to intestine epithelial cells. Deletion of Slc39a14/Zip14 causes spontaneous intestinal permeability with low-grade chronic inflammation, mild hyperinsulinemia, and greater body fat with insulin resistance in adipose. Importantly, antibiotic treatment reverses the adipocyte phenotype of Slc39a14/Zip14 knockout (KO), suggesting a potential gut microbial role in the metabolic alterations in the Slc39a14/Zip14 KO mice. Here, we investigated the hypothesis that increased intestinal permeability and subsequent metabolic alterations in the absence of Zip14 could be in part due to alterations in gut microbial composition. Dietary metals have been shown to be involved in the regulation of gut microbial diversity and composition. However, studies linking the action of intestinal metal transporters to gut microbial regulation are lacking. We showed the influence of deletion of metal transporter Slc39a14/Zip14 on gut microbiome composition and how ZIP14-linked changes to gut microbiome community composition are correlated with changes in host metabolism. Deletion of Slc39a14/Zip14 generated Zn-deficient epithelial cells and luminal content in the entire intestinal tract, a shift in gut microbial composition that partially overlapped with changes previously associated with obesity and inflammatory bowel disease (IBD), increased the fungi/bacteria ratio in the gut microbiome, altered the host metabolome, and shifted host energy metabolism toward glucose utilization. Collectively, our data suggest a potential predisease microbial susceptibility state dependent on host gene Slc39a14/Zip14 that contributes to intestinal permeability, a common trait of IBD, and metabolic disorders such as obesity and type 2 diabetes.NEW & NOTEWORTHY Metal dyshomeostasis, intestinal permeability, and gut dysbiosis are emerging signatures of chronic disorders, including inflammatory bowel diseases, type-2 diabetes, and obesity. Studies in reciprocal regulations between host intestinal metal transporters genes and gut microbiome are scarce. Our research revealed a potential predisease microbial susceptibility state dependent on the host metal transporter gene, Slc39a14/Zip14, that contributes to intestinal permeability providing new insight into understanding host metal transporter gene-microbiome interactions in developing chronic disease.


Assuntos
Proteínas de Transporte de Cátions , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Metais/metabolismo , Camundongos Knockout , Obesidade/genética
2.
J Lipid Res ; 63(7): 100236, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667415

RESUMO

Bacterial sphingolipid synthesis is important for the fitness of gut commensal bacteria with an implied potential for regulating mammalian host physiology. Multiple steps in bacterial sphingolipid synthesis pathways have been characterized previously, with the first step of de novo sphingolipid synthesis being well conserved between bacteria and eukaryotes. In mammals, the subsequent step of de novo sphingolipid synthesis is catalyzed by 3-ketosphinganine reductase, but the protein responsible for this activity in bacteria has remained elusive. In this study, we analyzed the 3-ketosphinganine reductase activity of several candidate proteins in Bacteroides thetaiotaomicron chosen based on sequence similarity to the yeast 3-ketosphinganine reductase gene. We further developed a metabolomics-based 3-ketosphinganine reductase activity assay, which revealed that a gene at the locus BT_0972 encodes a protein capable of converting 3-ketosphinganine to sphinganine. Taken together, these results provide greater insight into pathways for bacterial sphingolipid synthesis that can aid in future efforts to understand how microbial sphingolipid synthesis modulates host-microbe interactions.


Assuntos
Bacteroides thetaiotaomicron , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo
3.
J Lipid Res ; 62: 100034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32646940

RESUMO

Functions of the gut microbiome have a growing number of implications for host metabolic health, with diet being one of the most significant influences on microbiome composition. Compelling links between diet and the gut microbiome suggest key roles for various macronutrients, including lipids, yet how individual classes of dietary lipids interact with the microbiome remains largely unknown. Sphingolipids are bioactive components of most foods and are also produced by prominent gut microbes. This makes sphingolipids intriguing candidates for shaping diet-microbiome interactions. Here, we used a click chemistry-based approach to track the incorporation of bioorthogonal dietary omega-alkynyl sphinganine [sphinganine alkyne (SAA)] into the murine gut microbial community (bioorthogonal labeling). We identified microbial and SAA-specific metabolic products through fluorescence-based sorting of SAA-containing microbes (Sort), 16S rRNA gene sequencing to identify the sphingolipid-interacting microbes (Seq), and comparative metabolomics to identify products of SAA assimilation by the microbiome (Spec). Together, this approach, termed Bioorthogonal labeling-Sort-Seq-Spec (BOSSS), revealed that SAA assimilation is nearly exclusively performed by gut Bacteroides, indicating that sphingolipid-producing bacteria play a major role in processing dietary sphinganine. Comparative metabolomics of cecal microbiota from SAA-treated mice revealed conversion of SAA to a suite of dihydroceramides, consistent with metabolic activities of Bacteroides and Bifidobacterium. Additionally, other sphingolipid-interacting microbes were identified with a focus on an uncharacterized ability of Bacteroides and Bifidobacterium to metabolize dietary sphingolipids. We conclude that BOSSS provides a platform to study the flux of virtually any alkyne-labeled metabolite in diet-microbiome interactions.


Assuntos
Microbioma Gastrointestinal
5.
mBio ; 15(2): e0240923, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236049

RESUMO

Sphingolipids serve as vital structural and signaling components of the cell membranes in both eukaryotes and prokaryotes. Within the gut microbiome, Bacteroides species have been identified as major producers of sphingolipids, and Bacteroides-produced sphingolipids have been shown to be modulators of host immune and metabolic functions. While Bacteroides species are a prominent feature of the gut microbiomes of populations living in industrialized countries, Prevotella copri, a member of the same phyla, albeit a different family, is the dominant feature across the remainder of the global population, although their sphingolipid-producing capabilities have not been as thoroughly investigated. To fill this gap, we examined the genomes of over 60 diverse isolates of P. copri and identified several key enzymes involved in sphingolipid synthesis in P. copri. Combining bioorthogonal labeling and liquid chromatography-mass spectrometry (LC-MS) based lipidomics, we functionally characterized the first step in P. copri de novo sphingolipid synthesis in addition to profiling the sphingolipidomes of P. copri strains, identifying key enzymes that may play roles in producing a diverse set of P. copri sphingolipids. Given the limited genetic engineering tools amenable for use in P. copri, our approach takes advantage of comparative genomics and phenotypic profiling to explore sphingolipid production in these understudied, yet highly prevalent, organisms.IMPORTANCESphingolipids are important signaling molecules for maintaining metabolic and immune homeostasis in the host. These lipids are also produced by gut commensals, most notably by Bacteroides species. Despite the global prevalence of Prevotella copri in gut microbiomes of individuals, little is known about the types of sphingolipids they produce and whether they are similar in composition and structure to those produced by Bacteroides. Given the varied associations of P. copri with diverse sphingolipid-related health outcomes, such as rheumatoid arthritis and glucose intolerance, it is important to first characterize the specific sphingolipids produced by individual strains of P. copri and to identify the genes involved in their pathways of production. This characterization of P. copri-derived sphingolipids provides further insight into how bacterial sphingolipid production can serve as a mechanism for microbial modulation of host phenotypes.


Assuntos
Microbioma Gastrointestinal , Esfingolipídeos , Humanos , Prevotella/genética , Eucariotos/metabolismo , Microbioma Gastrointestinal/genética , Bacteroides/genética , Bacteroides/metabolismo
6.
Cell Host Microbe ; 30(6): 798-808.e7, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35623356

RESUMO

Microbially-derived gut metabolites are important contributors to host phenotypes, many of which may link microbiome composition to metabolic disease. However, relatively few metabolites with known bioactivity have been traced from specific microbes to host tissues. Here, we use a labeling strategy to characterize and trace bacterial sphingolipids from the gut symbiont Bacteroides thetaiotaomicron to mouse colons and livers. We find that bacterial sphingolipid synthesis rescues excess lipid accumulation in a mouse model of hepatic steatosis and observe the transit of a previously uncharacterized bacterial sphingolipid to the liver. The addition of this sphingolipid to hepatocytes improves respiration in response to fatty-acid overload, suggesting that sphingolipid transfer to the liver could potentially contribute to microbiota-mediated liver function. This work establishes a role for bacterial sphingolipids in modulating hepatic phenotypes and defines a workflow that permits the characterization of other microbial metabolites with undefined functions in host health.


Assuntos
Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Microbiota , Animais , Bacteroides thetaiotaomicron/metabolismo , Fígado/metabolismo , Camundongos , Esfingolipídeos/metabolismo
7.
Nat Microbiol ; 7(9): 1390-1403, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35982311

RESUMO

Consumption of dietary lipids, such as cholesterol, modulates the gut microbiome with consequences for host health through the production of microbiome-derived metabolites. Despite the implications for host metabolism, a limited number of specific interactions of the gut microbiome with diet-derived lipids have been characterized. This is partially because obtaining species-level resolution of the responsible taxa can be challenging and additional approaches are needed to identify health-relevant metabolites produced from cholesterol-microbiome interactions. Here we performed bio-orthogonal labelling sort sequence spectrometry, a click chemistry based workflow, to profile cholesterol-specific host-microbe interactions. Mice were exposed to an alkyne-functionalized variant of cholesterol and 16S ribosomal RNA gene amplicon sequencing of faecal samples identified diet-derived cholesterol-interacting microbes from the genera Bacteroides, Bifidobacterium, Enterococcus and Parabacteroides. Shotgun metagenomic analysis provided species-level resolution of diet-derived cholesterol-interacting microbes with enrichment of bile acid-like and sulfotransferase-like activities. Using untargeted metabolomics, we identify that cholesterol is converted to cholesterol sulfate in a Bacteroides-specific manner via the enzyme BT_0416. Mice monocolonized with Bacteroides thetaiotaomicron lacking Bt_0416 showed altered host cholesterol and cholesterol sulfate compared with wild-type mice, identifying a previously uncharacterized microbiome-transformation of cholesterol and a mechanism for microbiome-dependent contributions to host phenotype. Moreover, identification of a cholesterol-responsive sulfotransferase in Bacteroides suggests diet-dependent mechanisms for altering microbiome-specific cholesterol metabolism. Overall, our work identifies numerous cholesterol-interacting microbes with implications for more precise microbiome-conscious regulation of host cholesterol homeostasis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bacteroides , Colesterol , Colesterol na Dieta , Gorduras na Dieta , Humanos , Camundongos , Sulfotransferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA