RESUMO
Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.
Assuntos
Longevidade , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Longevidade/genética , Fosfatidilinositol 3-Quinases/genética , Envelhecimento/genética , Mamíferos/genética , Perfilação da Expressão GênicaRESUMO
The incidence of atherosclerosis is higher among patients with systemic lupus erythematosus (SLE); however, the mechanism by which an atherogenic environment affects autoimmunity remains unclear. We found that reconstitution of atherosclerosis-prone Apoe-/- and Ldlr-/- mice with bone marrow from lupus-prone BXD2 mice resulted in increased autoantibody production and glomerulonephritis. This enhanced disease was associated with an increase in CXCR3+ follicular helper T cells (TFH cells). TFH cells isolated from Apoe-/- mice had higher expression of genes associated with inflammatory responses and SLE and were more potent in inducing production of the immunoglobulin IgG2c. Mechanistically, the atherogenic environment induced the cytokine IL-27 from dendritic cells in a Toll-like receptor 4 (TLR4)-dependent manner, which in turn triggered the differentiation of CXCR3+ TFH cells while inhibiting the differentiation of follicular regulatory T cells. Blockade of IL-27 signals diminished the increased TFH cell responses in atherogenic mice. Thus, atherogenic dyslipidemia augments autoimmune TFH cell responses and subsequent IgG2c production in a TLR4- and IL-27-dependent manner.
Assuntos
Aterosclerose/imunologia , Dislipidemias/imunologia , Interleucinas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoimunidade/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Camundongos , Camundongos Knockout , Receptor 4 Toll-Like/imunologiaRESUMO
In the version of this article initially published, the third label along the horizontal axis of Fig. 4b (Il13a) and the middle label above each plot in Fig. 6k (Stat-/-) were incorrect, and the hash marks along the horizontal axis for Fig. 6i were spaced incorrectly. Also, the statistical results in the citation for Supplementary Fig. 5a (*P < 0.05, **P < 0.01 and ***P < 0.001 (unpaired Student's t-test)) in the fifth subsection of Results were incorrect. The correct label for Fig. 4b is Il23a and for Fig. 6k is Stat1-/-, and the right hash mark along the horizontal axis for Fig. 6i should be beneath the data points at right. The correct citation of the statistical results is as follows: "(P < 0.05 and P < 0.01 (unpaired Student's t-test); Supplementary Fig. 5a)." The errors have been corrected in the HTML and PDF version of the article.
RESUMO
Control of the spin angular momentum (SAM) carried in a photon provides a technologically attractive element for next-generation quantum networks and spintronics1-5. However, the weak optical activity and inhomogeneity of thin films from chiral molecular crystals result in high noise and uncertainty in SAM detection. Brittleness of thin molecular crystals represents a further problem for device integration and practical realization of chiroptical quantum devices6-10. Despite considerable successes with highly dissymmetric optical materials based on chiral nanostructures11-13, the problem of integration of nanochiral materials with optical device platforms remains acute14-16. Here we report a simple yet powerful method to fabricate chiroptical flexible layers via supramolecular helical ordering of conjugated polymer chains. Their multiscale chirality and optical activity can be varied across the broad spectral range by chiral templating with volatile enantiomers. After template removal, chromophores remain stacked in one-dimensional helical nanofibrils producing a homogeneous chiroptical layer with drastically enhanced polarization-dependent absorbance, leading to well-resolved detection and visualization of SAM. This study provides a direct path to scalable realization of on-chip detection of the spin degree of freedom of photons necessary for encoded quantum information processing and high-resolution polarization imaging.
RESUMO
The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neurônios Dopaminérgicos , Sobrevivência de Enxerto , Doenças Neuroinflamatórias , Doença de Parkinson , Linfócitos T Reguladores , Tirosina 3-Mono-Oxigenase , Humanos , Dopamina/análogos & derivados , Dopamina/metabolismo , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/transplante , Mesencéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neuroinflamatórias/terapia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Tirosina 3-Mono-Oxigenase/deficiência , Tirosina 3-Mono-Oxigenase/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Animais , Camundongos , Ratos , Oxidopamina/metabolismo , Sobrevivência de Enxerto/imunologia , Morte Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Neostriado/metabolismo , Fatores de Tempo , Proliferação de Células , Resultado do TratamentoRESUMO
The nearby radio galaxy M87 offers a unique opportunity to explore the connections between the central supermassive black hole and relativistic jets. Previous studies of the inner region of M87 revealed a wide opening angle for the jet originating near the black hole1-4. The Event Horizon Telescope resolved the central radio source and found an asymmetric ring structure consistent with expectations from general relativity5. With a baseline of 17 years of observations, there was a shift in the jet's transverse position, possibly arising from an 8- to 10-year quasi-periodicity3. However, the origin of this sideways shift remains unclear. Here we report an analysis of radio observations over 22 years that suggests a period of about 11 years for the variation in the position angle of the jet. We infer that we are seeing a spinning black hole that induces the Lense-Thirring precession of a misaligned accretion disk. Similar jet precession may commonly occur in other active galactic nuclei but has been challenging to detect owing to the small magnitude and long period of the variation.
RESUMO
The high volatility of the price of cobalt and the geopolitical limitations of cobalt mining have made the elimination of Co a pressing need for the automotive industry1. Owing to their high energy density and low-cost advantages, high-Ni and low-Co or Co-free (zero-Co) layered cathodes have become the most promising cathodes for next-generation lithium-ion batteries2,3. However, current high-Ni cathode materials, without exception, suffer severely from their intrinsic thermal and chemo-mechanical instabilities and insufficient cycle life. Here, by using a new compositionally complex (high-entropy) doping strategy, we successfully fabricate a high-Ni, zero-Co layered cathode that has extremely high thermal and cycling stability. Combining X-ray diffraction, transmission electron microscopy and nanotomography, we find that the cathode exhibits nearly zero volumetric change over a wide electrochemical window, resulting in greatly reduced lattice defects and local strain-induced cracks. In-situ heating experiments reveal that the thermal stability of the new cathode is significantly improved, reaching the level of the ultra-stable NMC-532. Owing to the considerably increased thermal stability and the zero volumetric change, it exhibits greatly improved capacity retention. This work, by resolving the long-standing safety and stability concerns for high-Ni, zero-Co cathode materials, offers a commercially viable cathode for safe, long-life lithium-ion batteries and a universal strategy for suppressing strain and phase transformation in intercalation electrodes.
RESUMO
Activation of dual-specificity tyrosine-phosphorylation-regulated kinases 1A and 1B (DYRK1A and DYRK1B) requires prolyl hydroxylation by PHD1 prolyl hydroxylase. Prolyl hydroxylation of DYRK1 initiates a cascade of events leading to the release of molecular constraints on von Hippel-Lindau (VHL) ubiquitin ligase tumor suppressor function. However, the proline residue of DYRK1 targeted by hydroxylation and the role of prolyl hydroxylation in tyrosine autophosphorylation of DYRK1 are unknown. We found that a highly conserved proline in the CMGC insert of the DYRK1 kinase domain is hydroxylated by PHD1, and this event precedes tyrosine autophosphorylation. Mutation of the hydroxylation acceptor proline precludes tyrosine autophosphorylation and folding of DYRK1, resulting in a kinase unable to preserve VHL function and lacking glioma suppression activity. The consensus proline sequence is shared by most CMGC kinases, and prolyl hydroxylation is essential for catalytic activation. Thus, formation of prolyl-hydroxylated intermediates is a novel mechanism of kinase maturation and likely a general mechanism of regulation of CMGC kinases in eukaryotes.
Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Isoenzimas/genética , Prolina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Xenoenxertos , Humanos , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Camundongos , Camundongos Nus , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Mutação , Neuroglia/metabolismo , Neuroglia/patologia , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Quinases DyrkRESUMO
Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MeCP2), is one of the most prevalent intellectual disorders without effective therapies. Here, we used 2D and 3D human brain cultures to investigate MeCP2 function. We found that MeCP2 mutations cause severe abnormalities in human interneurons (INs). Surprisingly, treatment with a BET inhibitor, JQ1, rescued the molecular and functional phenotypes of MeCP2 mutant INs. We uncovered that abnormal increases in chromatin binding of BRD4 and enhancer-promoter interactions underlie the abnormal transcription in MeCP2 mutant INs, which were recovered to normal levels by JQ1. We revealed cell-type-specific transcriptome impairment in MeCP2 mutant region-specific human brain organoids that were rescued by JQ1. Finally, JQ1 ameliorated RTT-like phenotypes in mice. These data demonstrate that BRD4 dysregulation is a critical driver for RTT etiology and suggest that targeting BRD4 could be a potential therapeutic opportunity for RTT.
Assuntos
Azepinas/farmacologia , Encéfalo/patologia , Proteínas de Ciclo Celular/metabolismo , Interneurônios/patologia , Proteína 2 de Ligação a Metil-CpG/fisiologia , Síndrome de Rett/patologia , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Triazóis/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Feminino , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Fatores de Transcrição/genéticaRESUMO
Neuronal hyperactivity is a key feature of early stages of Alzheimer's disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia-synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super-resolution microscopy, 3D-live imaging of co-cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aß oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical "eat-me" signal. These apoptotic-like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aß oligomer-induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer-TREM2 signaling in microglia-synapse engulfment in the hAPP NL-F knock-in mouse model of AD. Higher levels of apoptotic-like synapses in mice as well as humans that carry TREM2 loss-of-function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aß-relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD.
Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Microglia , Sinapses , Modelos Animais de Doenças , Peptídeos beta-Amiloides/genética , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genéticaRESUMO
Modular organization at approximately 1 mm scale could be fundamental to cortical processing, but its presence in human association cortex is unknown. Using custom-built, high-density electrode arrays placed on the cortical surface of 7 patients undergoing awake craniotomy for tumor excision, we investigated receptive speech processing in the left (dominant) human posterior superior temporal gyrus. Responses to consonant-vowel syllables and noise-vocoded controls recorded with 1,024 channel micro-grids at 200 µm pitch demonstrated roughly circular domains approximately 1.7 mm in diameter, with sharp boundaries observed in 128 channel linear arrays at 50 µm pitch, possibly consistent with a columnar organization. Peak latencies to syllables in different modules were bimodally distributed centered at 252 and 386 ms. Adjacent modules were sharply delineated from each other by their distinct time courses and stimulus selectivity. We suggest that receptive language cortex may be organized in discrete processing modules.
Assuntos
Percepção da Fala , Lobo Temporal , Humanos , Lobo Temporal/fisiologia , Percepção da Fala/fisiologia , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Mapeamento Encefálico/métodos , Idioma , Estimulação AcústicaRESUMO
Molecular chaperones assist in protein refolding by selectively binding to proteins in their nonnative states. Despite progress in creating artificial chaperones, these designs often have a limited range of substrates they can work with. In this paper, we present molecularly imprinted flexible polymer nanoparticles (nanoMIPs) designed as customizable biomimetic chaperones. We used model proteins such as cytochrome c, laccase, and lipase to screen polymeric monomers and identify the most effective formulations, offering tunable charge and hydrophobic properties. Utilizing a dispersed phase imprinting approach, we employed magnetic beads modified with destabilized whole-protein as solid-phase templates. This process involves medium exchange facilitated by magnetic pulldowns, resulting in the synthesis of nanoMIPs featuring imprinted sites that effectively mimic chaperone cavities. These nanoMIPs were able to selectively refold denatured enzymes, achieving up to 86.7% recovery of their activity, significantly outperforming control samples. Mechanistic studies confirmed that nanoMIPs preferentially bind denatured rather than native enzymes, mimicking natural chaperone interactions. Multifaceted analyses support the functionality of nanoMIPs, which emulate the protective roles of chaperones by selectively engaging with denatured proteins to inhibit aggregation and facilitate refolding. This approach shows promise for widespread use in protein recovery within biocatalysis and biomedicine.
Assuntos
Chaperonas Moleculares , Nanopartículas , Polímeros , Desnaturação Proteica , Nanopartículas/química , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Polímeros/química , Redobramento de Proteína , Dobramento de Proteína , Citocromos c/química , Citocromos c/metabolismo , Lacase/química , Lacase/metabolismo , Lipase/química , Lipase/metabolismoRESUMO
Three RpoD-family sigma factors, RpoD, RpoS, and RpoH, play critical roles in transcriptional regulation in Salmonella enterica serovar Typhimurium under heat shock conditions. However, the genome-wide regulatory mechanisms of these sigma factors in response to heat stress have remained elusive. In this study, we comprehensively identified 2,319, 2,226, and 213 genome-wide binding sites for RpoD, RpoS, and RpoH, respectively, under sublethal heat shock conditions (42°C). Machine learning-based transcriptome analysis was employed to infer the relative activity of iModulons, providing valuable insights into the transcriptional impact of heat shock. Integrative data analysis enabled the reconstruction of the transcriptional regulatory network of sigma factors, revealing how they modulate gene expression to adapt to heat stress, including responses to anaerobic and oxidative stresses. Notably, we observed a significant expansion of the RpoS sigmulon from 97 to 301 genes in response to heat shock, underscoring the crucial role of RpoS in regulating various metabolic processes. Moreover, we uncovered a competition mechanism between RpoD and RpoS within RpoS sigmulons, where RpoS significantly increases its binding within promoter regions shared with RpoD under heat shock conditions. These findings illuminate how three RpoD-family sigma factors coordinate multiple cellular processes to orchestrate the overall response of S. Typhimurium to heat stress.
RESUMO
Mineral precipitation caused by fluid mixing presents complex control and predictability challenges in a variety of natural and engineering processes, including carbon mineralization, geothermal energy, and microfluidics. Precipitation dynamics, particularly under the influence of fluid flow, remain poorly understood. Combining microfluidic experiments and three-dimensional reactive transport simulations, we demonstrate that fluid inertia controls mineral precipitation and clogging at flow intersections, even in laminar flows. We observe distinct precipitation regimes as a function of Reynolds number (Re). At low Reynolds numbers (Re < 10), precipitates form a thin, dense layer along the mixing interface, which shuts precipitation off, while at high Reynolds numbers (Re > 50), strong three-dimensional flows significantly enhance precipitation over the entire intersection, resulting in rapid clogging. When injection rates from two inlets are uneven, flow symmetry-breaking leads to unexpected flow bifurcation phenomena, which result in enhanced concurrent precipitation in both downstream channels. Finally, we extend our findings to rough channel networks and demonstrate that the identified inertial effects on precipitation at the intersection scale are also present and even more dramatic at the network scale. This study sheds light on the fundamental mechanisms underlying mixing-induced mineral precipitation and provides a framework for designing and optimizing processes involving mineral precipitation.
RESUMO
Succinic acid (SA), a dicarboxylic acid of industrial importance, can be efficiently produced by metabolically engineered Mannheimia succiniciproducens. Although the importance of magnesium (Mg2+) ion on SA production has been evident from our previous studies, the role of Mg2+ ion remains largely unexplored. In this study, we investigated the impact of Mg2+ ion on SA production and developed a hyper-SA producing strain of M. succiniciproducens by reconstructing the Mg2+ ion transport system. To achieve this, optimal alkaline neutralizer comprising Mg2+ ion was developed and the physiological effect of Mg2+ ion was analyzed. Subsequently, the Mg2+ ion transport system was reconstructed by introducing an efficient Mg2+ ion transporter from Salmonella enterica. A high-inoculum fed-batch fermentation of the final engineered strain produced 152.23 ± 0.99 g/L of SA, with a maximum productivity of 39.64 ± 0.69 g/L/h. These findings highlight the importance of Mg2+ ions and transportation system optimization in succinic acid production by M. succiniciproducens.
Assuntos
Fermentação , Magnésio , Mannheimia , Ácido Succínico , Ácido Succínico/metabolismo , Magnésio/metabolismo , Mannheimia/metabolismo , Mannheimia/genética , Engenharia Metabólica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genéticaRESUMO
Environmental concerns from plastic waste are driving interest in alternative monomers from bio-based sources. Pseudoaromatic dicarboxylic acids are promising alternatives with chemical structures similar to widely used petroleum-based aromatic dicarboxylic acids. However, their use in polyester synthesis has been limited due to production challenges. Here, we report the fermentative production of five pseudoaromatic dicarboxylic acids, including 2-pyrone-4,6-dicarboxylic acid (PDC) and pyridine dicarboxylic acids (PDCAs: 2,3-, 2,4-, 2,5-, and 2,6-PDCA), from glucose using five engineered Corynebacterium glutamicum strains. A platform C. glutamicum chassis strain was constructed by modulating the expression of nine genes involved in the synthesis and degradation pathways of precursor protocatechuate (PCA) and the glucose-uptake system. Comparative transcriptome analysis of the engineered strain against wild-type C. glutamicum identified iolE (NCgl0160) as a target for PDC production. Optimized fed-batch fermentation conditions enabled the final engineered strain to produce 76.17 ± 1.24 g/L of PDC. Using this platform strain, we constructed 2,3-, 2,4-, and 2,5-PDCA-producing strains by modulating the expression of key enzymes. Additionally, we demonstrated a previously uncharacterized pathway for 2,3-PDCA biosynthesis. The engineered strains produced 2.79 ± 0.005 g/L of 2,3-PDCA, 494.26 ± 2.61 mg/L of 2,4-PDCA, and 1.42 ± 0.02 g/L of 2,5-PDCA through fed-batch fermentation. To complete the portfolio, we introduced the 2,6-PDCA biosynthetic pathway to an L-aspartate pathway-enhanced C. glutamicum strain, producing 15.01 ± 0.03 g/L of 2,6-PDCA in fed-batch fermentation. The metabolic engineering strategies developed here will be useful for the production of pseudoaromatic chemicals.
Assuntos
Corynebacterium glutamicum , Ácidos Dicarboxílicos , Engenharia Metabólica , Piridinas , Pironas , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Engenharia Metabólica/métodos , Ácidos Dicarboxílicos/metabolismo , Piridinas/metabolismo , Pironas/metabolismo , Fermentação , Glucose/metabolismoRESUMO
The clinical severity of sickle cell disease (SCD) is strongly influenced by the level of fetal haemoglobin (HbF) persistent in each patient. Three major HbF loci (BCL11A, HBS1L-MYB, and Xmn1-HBG2) have been reported, but a considerable hidden heritability remains. We conducted a genome-wide association study for HbF levels in 1006 Nigerian patients with SCD (HbSS/HbSß0), followed by a replication and meta-analysis exercise in four independent SCD cohorts (3,582 patients). To dissect association signals at the major loci, we performed stepwise conditional and haplotype association analyses and included public functional annotation datasets. Association signals were detected for BCL11A (lead SNP rs6706648, ß = -0.39, P = 4.96 × 10-34) and HBS1L-MYB (lead SNP rs61028892, ß = 0.73, P = 1.18 × 10-9), whereas the variant allele for Xmn1-HBG2 was found to be very rare. In addition, we detected three putative new trait-associated regions. Genetically, dissecting the two major loci BCL11A and HBS1L-MYB, we defined trait-increasing haplotypes (P < 0.0001) containing so far unidentified causal variants. At BCL11A, in addition to a haplotype harbouring the putative functional variant rs1427407-'T', we identified a second haplotype, tagged by the rs7565301-'A' allele, where a yet-to-be-discovered causal DNA variant may reside. Similarly, at HBS1L-MYB, one HbF-increasing haplotype contains the likely functional small indel rs66650371, and a second tagged by rs61028892-'C' is likely to harbour a presently unknown functional allele. Together, variants at BCL11A and HBS1L-MYB SNPs explained 24.1% of the trait variance. Our findings provide a path for further investigation of the causes of variable fetal haemoglobin persistence in sickle cell disease.
Assuntos
Anemia Falciforme , Proteínas de Ligação ao GTP , Estudo de Associação Genômica Ampla , Haplótipos , Feminino , Humanos , Masculino , Alelos , Anemia Falciforme/genética , Anemia Falciforme/sangue , Predisposição Genética para Doença , Nigéria , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Repressoras/genéticaRESUMO
Esophageal squamous cell carcinoma (ESCC) has a high disease burden in sub-Saharan Africa and has a very poor prognosis. Genome-wide association studies (GWASs) of ESCC in predominantly East Asian populations indicate a substantial genetic contribution to its etiology, but no genome-wide studies have been done in populations of African ancestry. Here, we report a GWAS in 1,686 African individuals with ESCC and 3,217 population-matched control individuals to investigate its genetic etiology. We identified a genome-wide-significant risk locus on chromosome 9 upstream of FAM120A (rs12379660, p = 4.58 × 10-8, odds ratio = 1.28, 95% confidence interval = 1.22-1.34), as well as a potential African-specific risk locus on chromosome 2 (rs142741123, p = 5.49 × 10-8) within MYO1B. FAM120A is a component of oxidative stress-induced survival signals, and the associated variants at the FAM120A locus co-localized with highly significant cis-eQTLs in FAM120AOS in both esophageal mucosa and esophageal muscularis tissue. A trans-ethnic meta-analysis was then performed with the African ESCC study and a Chinese ESCC study in a combined total of 3,699 ESCC-affected individuals and 5,918 control individuals, which identified three genome-wide-significant loci on chromosome 9 at FAM120A (rs12379660, pmeta = 9.36 × 10-10), chromosome 10 at PLCE1 (rs7099485, pmeta = 1.48 × 10-8), and chromosome 22 at CHEK2 (rs1033667, pmeta = 1.47 × 10-9). This indicates the existence of both shared and distinct genetic risk loci for ESCC in African and Asian populations. Our GWAS of ESCC conducted in a population of African ancestry indicates a substantial genetic contribution to ESCC risk in Africa.
Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Estudos de Casos e Controles , População do Leste Asiático , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , População AfricanaRESUMO
BACKGROUND: Data regarding clinical outcomes after intravascular imaging-guided percutaneous coronary intervention (PCI) for complex coronary-artery lesions, as compared with outcomes after angiography-guided PCI, are limited. METHODS: In this prospective, multicenter, open-label trial in South Korea, we randomly assigned patients with complex coronary-artery lesions in a 2:1 ratio to undergo either intravascular imaging-guided PCI or angiography-guided PCI. In the intravascular imaging group, the choice between intravascular ultrasonography and optical coherence tomography was at the operators' discretion. The primary end point was a composite of death from cardiac causes, target-vessel-related myocardial infarction, or clinically driven target-vessel revascularization. Safety was also assessed. RESULTS: A total of 1639 patients underwent randomization, with 1092 assigned to undergo intravascular imaging-guided PCI and 547 assigned to undergo angiography-guided PCI. At a median follow-up of 2.1 years (interquartile range, 1.4 to 3.0), a primary end-point event had occurred in 76 patients (cumulative incidence, 7.7%) in the intravascular imaging group and in 60 patients (cumulative incidence, 12.3%) in the angiography group (hazard ratio, 0.64; 95% confidence interval, 0.45 to 0.89; P = 0.008). Death from cardiac causes occurred in 16 patients (cumulative incidence, 1.7%) in the intravascular imaging group and in 17 patients (cumulative incidence, 3.8%) in the angiography group; target-vessel-related myocardial infarction occurred in 38 (cumulative incidence, 3.7%) and 30 (cumulative incidence, 5.6%), respectively; and clinically driven target-vessel revascularization in 32 (cumulative incidence, 3.4%) and 25 (cumulative incidence, 5.5%), respectively. There were no apparent between-group differences in the incidence of procedure-related safety events. CONCLUSIONS: Among patients with complex coronary-artery lesions, intravascular imaging-guided PCI led to a lower risk of a composite of death from cardiac causes, target-vessel-related myocardial infarction, or clinically driven target-vessel revascularization than angiography-guided PCI. (Supported by Abbott Vascular and Boston Scientific; RENOVATE-COMPLEX-PCI ClinicalTrials.gov number, NCT03381872).
Assuntos
Doença da Artéria Coronariana , Stents Farmacológicos , Infarto do Miocárdio , Intervenção Coronária Percutânea , Humanos , Angiografia Coronária/efeitos adversos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Doença da Artéria Coronariana/etiologia , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/etiologia , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Estudos Prospectivos , Resultado do Tratamento , Ultrassonografia de Intervenção/métodosRESUMO
The precise timing of flowering in adverse environments is critical for plants to secure reproductive success. We report a mechanism in Arabidopsis (Arabidopsis thaliana) controlling the time of flowering by which the S-acylation-dependent nuclear import of the protein SALT OVERLY SENSITIVE3/CALCINEURIN B-LIKE4 (SOS3/CBL4), a Ca2+-signaling intermediary in the plant response to salinity, results in the selective stabilization of the flowering time regulator GIGANTEA inside the nucleus under salt stress, while degradation of GIGANTEA in the cytosol releases the protein kinase SOS2 to achieve salt tolerance. S-acylation of SOS3 was critical for its nuclear localization and the promotion of flowering, but partly dispensable for salt tolerance. SOS3 interacted with the photoperiodic flowering components GIGANTEA and FLAVIN-BINDING, KELCH REPEAT, F-BOX1 and participated in the transcriptional complex that regulates CONSTANS to sustain the transcription of CO and FLOWERING LOCUS T under salinity. Thus, the SOS3 protein acts as a Ca2+- and S-acylation-dependent versatile regulator that fine-tunes flowering time in a saline environment through the shared spatial separation and selective stabilization of GIGANTEA, thereby connecting two signaling networks to co-regulate the stress response and the time of flowering.