RESUMO
Utilization of panoramic X-ray device is getting wider. Panoramic X-ray has low resolution than general X-ray device and it occurs to distortion by deviation of image synthesis. Due to structural problems, it has been used restrictively to identify of tooth structure, not for whole head. Therefore, it designed and produced panoramic X-ray device which is possible to diagnostic coverage can be extended and had to be adjusted interval control between X-ray generator and image processing for whole of Maxillofacia's diagnosis. Produced panoramic X-ray device is composed basically of short image synthesis. In addition, it was confirmed the results by used the device which was applied deviation of the brightness of the image, filter to improve the location of the deviation and interpolation method. In this study, it was used 13 images including the front. It occurs to brightness deviation, position deviation, and geometric correction when synthesis of image, but it had been solved by deviation improvement software and a change of CCD camera's scan line which is used for image acquisition. Therefore, it confirmed expansion possibility of utilization range to commonly used panoramic X-ray device.
Assuntos
Intensificação de Imagem Radiográfica/métodos , Radiografia Panorâmica/métodos , Humanos , SoftwareRESUMO
As wireless mobile telecommunication bases organize their structure using a honeycomb-mesh algorithm, there are many studies about parallel processing algorithms like the honeycomb mesh in Wireless Sensor Networks. This paper aims to study the Peterson-Torus graph algorithm in regard to the continuity with honeycomb-mesh algorithm in order to apply the algorithm to sensor networks. Once a new interconnection network is designed, parallel algorithms are developed with huge research costs to use such networks. If the old network is embedded in a newly designed network, a developed algorithm in the old network is reusable in a newly designed network. Petersen-Torus has been designed recently, and the honeycomb mesh has already been designed as a well-known interconnection network. In this paper, we propose a one-to-one embedding algorithm for the honeycomb mesh (HMn) in the Petersen-Torus PT(n,n), and prove that dilation of the algorithm is 5, congestion is 2, and expansion is 5/3. The proposed one-to-one embedding is applied so that processor throughput can be minimized when the honeycomb mesh algorithm runs in the Petersen-Torus.