Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS Biol ; 17(4): e3000228, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31039152

RESUMO

Circadian disruption has multiple pathological consequences, but the underlying mechanisms are largely unknown. To address such mechanisms, we subjected transformed cultured cells to chronic circadian desynchrony (CCD), mimicking a chronic jet-lag scheme, and assayed a range of cellular functions. The results indicated a specific circadian clock-dependent increase in cell proliferation. Transcriptome analysis revealed up-regulation of G1/S phase transition genes (myelocytomatosis oncogene cellular homolog [Myc], cyclin D1/3, chromatin licensing and DNA replication factor 1 [Cdt1]), concomitant with increased phosphorylation of the retinoblastoma (RB) protein by cyclin-dependent kinase (CDK) 4/6 and increased G1-S progression. Phospho-RB (Ser807/811) was found to oscillate in a circadian fashion and exhibit phase-shifted rhythms in circadian desynchronized cells. Consistent with circadian regulation, a CDK4/6 inhibitor approved for cancer treatment reduced growth of cultured cells and mouse tumors in a time-of-day-specific manner. Our study identifies a mechanism that underlies effects of circadian disruption on tumor growth and underscores the use of treatment timed to endogenous circadian rhythms.


Assuntos
Transtornos Cronobiológicos/metabolismo , Ritmo Circadiano/fisiologia , Neoplasias/metabolismo , Animais , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Linhagem Celular , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Fase G1/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas/genética , Proteína do Retinoblastoma , Fase S/fisiologia
2.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430659

RESUMO

Circadian rhythms, including sleep/wake cycles as well as hormonal, immune, metabolic, and cell proliferation rhythms, are fundamental biological processes driven by a cellular time-keeping system called the circadian clock. Disruptions in these rhythms due to genetic alterations or irregular lifestyles cause fundamental changes in physiology, from metabolism to cellular proliferation and differentiation, resulting in pathological consequences including cancer. Cancer cells are not uniform and static but exist as different subtypes with phenotypic and functional differences in the tumor microenvironment. At the top of the heterogeneous tumor cell hierarchy, cancer stem cells (CSCs), a self-renewing and multi-potent cancer cell type, are most responsible for tumor recurrence and metastasis, chemoresistance, and mortality. Phenotypically, CSCs are associated with the epithelial-mesenchymal transition (EMT), which confers cancer cells with increased motility and invasion ability that is characteristic of malignant and drug-resistant stem cells. Recently, emerging studies of different cancer types, such as glioblastoma, leukemia, prostate cancer, and breast cancer, suggest that the circadian clock plays an important role in the maintenance of CSC/EMT characteristics. In this review, we describe recent discoveries regarding how tumor intrinsic and extrinsic circadian clock-regulating factors affect CSC evolution, highlighting the possibility of developing novel chronotherapeutic strategies that could be used against CSCs to fight cancer.


Assuntos
Neoplasias da Mama , Relógios Circadianos , Humanos , Feminino , Relógios Circadianos/genética , Células-Tronco Neoplásicas/patologia , Ritmo Circadiano/genética , Microambiente Tumoral , Neoplasias da Mama/patologia
3.
J Neurosci ; 36(34): 8936-46, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27559174

RESUMO

UNLABELLED: Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. SIGNIFICANCE STATEMENT: Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The phosphodiesterase 4 (PDE4) family coordinates the degradation of cAMP, leading to the local attenuation of cAMP-dependent signaling pathways. Sleep deprivation leads to increased hippocampal expression of the PDE4A5 isoform. Here, we explored whether PDE4A5 overexpression mimics behavioral and synaptic plasticity phenotypes associated with sleep deprivation. Viral expression of PDE4A5 in hippocampal neurons impairs long-term potentiation and attenuates the formation of hippocampus-dependent long-term memories. Our findings suggest that PDE4A5 is a molecular constraint on cognitive processes and may contribute to the development of novel therapeutic approaches to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Memória de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Análise de Variância , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Colforsina/farmacologia , Condicionamento Clássico/fisiologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Estimulação Elétrica , Ensaio de Imunoadsorção Enzimática , Medo , Transferência Ressonante de Energia de Fluorescência , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Reconhecimento Psicológico/fisiologia , Transdução de Sinais/genética , Transdução Genética , Vasodilatadores/farmacologia
4.
PLoS Biol ; 12(4): e1001840, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24737000

RESUMO

Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Inteligência Artificial , Linhagem Celular , Relógios Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/biossíntese , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Criptocromos/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Alinhamento de Sequência , Transcrição Gênica/genética
5.
Biochim Biophys Acta ; 1853(10 Pt A): 2697-708, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26164627

RESUMO

CLOCK-BMAL1 is a key transcription factor complex of the molecular clock system that generates circadian gene expression and physiology in mammals. Here, we demonstrate that sumoylation of BMAL1 mediates the rapid activation of CLOCK-BMAL1 by CREB-binding protein (CBP) in nuclear foci and also the resetting of the circadian clock. Under physiological conditions, a bimolecular fluorescence complementation-based fluorescence resonance energy transfer (BiFC-FRET) assay revealed that CLOCK-BMAL1 rapidly dimerized and formed a ternary complex with CBP in discrete nuclear foci in response to serum stimuli. We found that the formation of this ternary complex requires sumoylation of BMAL1 by SUMO3. These processes were abolished by both the ectopic expression of the SUMP2/3-specific protease, SUSP1, and mutation of the major sumoylation site (Lys259) of BMAL1. Moreover, molecular inhibition of BMAL1 sumoylation abrogated acute Per1 transcription and severely dampened the circadian gene oscillation triggered by clock synchronization stimuli. Taken together, these findings suggest that sumoylation plays a critical role in the spatiotemporal co-activation of CLOCK-BMAL1 by CBP for immediate-early Per induction and the resetting of the circadian clock.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Núcleo Celular/metabolismo , Relógios Circadianos/fisiologia , Fragmentos de Peptídeos/metabolismo , Sialoglicoproteínas/metabolismo , Sumoilação/fisiologia , Fatores de Transcrição ARNTL/genética , Animais , Proteínas CLOCK/genética , Células COS , Núcleo Celular/genética , Chlorocebus aethiops , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Fragmentos de Peptídeos/genética , Sialoglicoproteínas/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
6.
J Agric Food Chem ; 72(22): 12555-12565, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776153

RESUMO

Anthocyanin-rich edible berries protect against diet-induced obesity in animal models. Prevention is mediated through the bidirectional relationship with the fecal microbiome, and gut-derived phenolic metabolite absorption increases with physical activity, which may influence bioactivity. The objective of this study was to test elderberry juice powder on the development of diet-induced obesity and its influence on the fecal microbiome alone or in combination with physical activity. Male C57BL/6J mice were assigned to one of four treatments, including (1) high-fat diet without wheel access; (2) high-fat diet with unlimited wheel access; (3) high-fat diet supplemented with 10% elderberry juice powder without wheel access; and (4) high-fat diet supplemented with 10% elderberry juice powder with unlimited wheel access. Body weight gain, fat pads, and whole-body fat content in mice fed elderberry juice were significantly less than in mice fed the control diet independent of wheel access. At the end of the study, active mice fed elderberry juice ate significantly more than active mice fed a control diet. There was no difference in the physical activity between active groups. Elderberry juice increasedBifidobacterium, promotedAkkermansia and Anaeroplasma, and prevented the growth of Desulfovibrio. Elderberry juice is a potent inhibitor of diet-induced obesity with action mediated by the gut microbiota.


Assuntos
Bactérias , Dieta Hiperlipídica , Fezes , Sucos de Frutas e Vegetais , Frutas , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Obesidade , Animais , Masculino , Obesidade/microbiologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Camundongos , Fezes/microbiologia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Sucos de Frutas e Vegetais/análise , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo , Frutas/química , Frutas/microbiologia , Humanos , Sambucus nigra/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Pós/química
7.
Nat Commun ; 15(1): 633, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245503

RESUMO

The circadian clock regulator Bmal1 modulates tumorigenesis, but its reported effects are inconsistent. Here, we show that Bmal1 has a context-dependent role in mouse melanoma tumor growth. Loss of Bmal1 in YUMM2.1 or B16-F10 melanoma cells eliminates clock function and diminishes hypoxic gene expression and tumorigenesis, which could be rescued by ectopic expression of HIF1α in YUMM2.1 cells. By contrast, over-expressed wild-type or a transcriptionally inactive mutant Bmal1 non-canonically sequester myosin heavy chain 9 (Myh9) to increase MRTF-SRF activity and AP-1 transcriptional signature, and shift YUMM2.1 cells from a Sox10high to a Sox9high immune resistant, mesenchymal cell state that is found in human melanomas. Our work describes a link between Bmal1, Myh9, mouse melanoma cell plasticity, and tumor immunity. This connection may underlie cancer therapeutic resistance and underpin the link between the circadian clock, MRTF-SRF and the cytoskeleton.


Assuntos
Relógios Circadianos , Melanoma , Animais , Humanos , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Carcinogênese/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Melanoma/genética
8.
Cancers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067361

RESUMO

Vitamin C (VC) is an essential nutrient that is vital for maintaining cellular physiology. Interestingly, it functions as either an antioxidant or a pro-oxidant, depending on the concentration used. At high-doses, VC selectively targets various cancer cell types through its pro-oxidant action, while at low-doses, VC enhances anti-tumor immunity by acting as an antioxidant. This versatility makes VC a promising anti-tumor agent for both standalone and combination therapies. Tumors consist of diverse cancer cell subtypes with distinct phenotypic and functional characteristics. In particular, cancer stem cells (CSCs), which are self-renewing multi-potent cells, are responsible for tumor recurrence, metastasis, chemoresistance, and heightened mortality. CSCs are often associated with the epithelial-mesenchymal transition (EMT), which confers increased motility and invasive capabilities that are characteristic of malignant and drug-resistant cells. Thus, eradicating CSC populations is crucial and has led to extensive efforts aimed at identifying medicines that can target them. Recent studies suggest that VC can selectively target CSCs via epigenetic and metabolic pathways in various cancers. Here, we highlight recent progress that has been made in understanding how VC effectively targets CSC evolution, providing a rationale for the use of VC either alone or in combination with other treatments to improve outcomes.

9.
PLoS One ; 18(3): e0283463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36961772

RESUMO

The molecular circadian clock is regulated by a transcriptional translational feedback loop. However, the post-translational control mechanisms are less understood. The NRON complex is a large ribonucleoprotein complex, consisting of a lncRNA and several proteins. Components of the complex play a distinct role in regulating protein phosphorylation, synthesis, stability, and translocation in cellular processes. This includes the NFAT and the circadian clock pathway. PSMD11 is a component of the NRON complex and a lid component of the 26S proteasome. Among the PSMD family members, PSMD11 has a more specific role in circadian clock function. Here, we used cell and biochemical approaches and characterized the role of PSMD11 in regulating the stability and nuclear translocation of circadian clock proteins. We used size exclusion chromatography to enrich the NRON complex in the cytosolic and nuclear fractions. More specifically, PSMD11 knockdown affected the abundance of PER2 and CRY2 proteins and the nuclear translocation of CRY1. This changed the relative abundance of CRY1 and CRY2 in the nucleus. Thus, this work defines the role of PSMD11 in the NRON complex regulating the nuclear translocation of circadian repressors, thereby enabling cellular circadian oscillations.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Criptocromos/genética , Criptocromos/metabolismo , Proteínas CLOCK/genética , Núcleo Celular/metabolismo , Fatores de Transcrição ARNTL/metabolismo
10.
J Cell Sci ; 123(Pt 20): 3547-57, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20930143

RESUMO

The transcription factor CLOCK-BMAL1 is a core component of the molecular clock machinery that drives circadian gene expression and physiology in mammals. Recently, we reported that this heterodimeric transcription factor functions as a signaling molecule in response to the resetting stimuli via the Ca²+-dependent protein kinase C pathway. Here, we demonstrate that the CREB-binding protein (CBP) plays a key role in rapid activation of the CLOCK-BMAL1 heterodimer that leads to phase resetting of the circadian clock. Under physiological conditions, a bimolecular fluorescence complementation (BiFC) assay revealed that CLOCK and BMAL1 dimerize in the cytoplasm and subsequently translocate into the nucleus in response to serum stimuli (mean time duration was 29.2 minutes and mean velocity 0.7 µm/minute). Concomitantly, BMAL1 rapidly recruited CBP on Per1 promoter E-box, but not p300 (a functional analog of CBP), in the discrete nuclear foci. However, recruitment of CBP by cAMP/Ca²+ response element-binding (CREB) protein on CRE was not markedly increased upon delivery of the resetting stimuli. Furthermore, overexpression of CBP greatly potentiated the CLOCK-BMAL1-mediated Per1 transcription, and this effect was completely abolished by site-directed mutation of E-box elements, but not by the mutation of CRE in the Per1 promoter. Furthermore, molecular knockdown of CBP severely dampened circadian oscillation of clock gene expression triggered by the resetting stimuli. These findings suggest that CBP recruitment by BMAL1 mediates acute transactivation of CLOCK-BMAL1, thereby inducing immediate-early Per1 transcription and phase resetting of the circadian clock.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Proteína de Ligação a CREB/metabolismo , Relógios Circadianos/fisiologia , Fatores de Transcrição ARNTL/genética , Animais , Proteínas CLOCK/genética , Células COS , Proteína de Ligação a CREB/genética , Núcleo Celular/metabolismo , Chlorocebus aethiops , Imunoprecipitação da Cromatina , Relógios Circadianos/genética , Citoplasma/metabolismo , Immunoblotting , Imunoprecipitação , Camundongos , Células NIH 3T3 , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ligação Proteica/genética , Ligação Proteica/fisiologia , Proteína Quinase C/metabolismo , Multimerização Proteica , RNA Interferente Pequeno
11.
Chem Sci ; 13(3): 737-747, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35173938

RESUMO

The activation of dioxygen is the keystone of all forms of aerobic life. Many biological functions rely on the redox versatility of metal ions to perform reductive activation-mediated processes entailing dioxygen and its partially reduced species including superoxide, hydrogen peroxide, and hydroxyl radicals, also known as reactive oxygen species (ROS). In biomimetic chemistry, a number of synthetic approaches have sought to design, synthesize and characterize reactive intermediates such as the metal-superoxo, -peroxo, and -oxo species, which are commonly found as key intermediates in the enzymatic catalytic cycle. However, the use of these designed complexes and their corresponding intermediates as potential candidates for cancer therapeutics has scarcely been endeavored. In this context, a series of biomimetic first-row transition metal complexes bearing a picolylamine-based water-soluble ligand, [M(HN3O2)]2+ (M = Mn2+, Fe2+, Co2+, Cu2+; HN3O2 = 2-(2-(bis(pyridin-2-ylmethyl)amino)ethoxy)ethanol) were synthesized and characterized by various spectroscopic methods including X-ray crystallography and their dioxygen and ROS activation reactivity were evaluated in situ and in vitro. It turned out that among these metal complexes, the iron complex, [Fe(HN3O2)(H2O)]2+, was capable of activating dioxygen and hydrogen peroxide and produced the ROS species (e.g., hydroxyl radical). Upon the incubation of these complexes with different cancer cells, such as cervical, breast, and colorectal cancer cells (MDA-MB-231, AU565, SK-BR-3, HeLa S3, HT-29, and HCT116 cells), only the iron complex triggered cellular apoptosis specifically for colorectal cancer cells; the other metal complexes show negligible anti-proliferative activity. More importantly, the biomimetic complexes were harmless to normal cells and produced less ROS therein. The use of immunocytochemistry combined with western blot analysis strongly supported that apoptosis occurred via the intrinsic mitochondrial pathway; in the intracellular network, [Fe(HN3O2)(H2O)]2+ resulted in (i) the activation and/or production of ROS species, (ii) the induction of intracellular impaired redox balance, and (iii) the promotion of the mitochondrial apoptotic signaling pathway in colorectal cancer cells. The results have implications for developing novel biomimetic complexes in cancer treatments and for designing potent candidates with cancer-specific antitumor activity.

12.
Exp Mol Med ; 53(10): 1529-1538, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34615982

RESUMO

Circadian clocks are ubiquitous timing mechanisms that generate approximately 24-h rhythms in cellular and bodily functions across nearly all living species. These internal clock systems enable living organisms to anticipate and respond to daily changes in their environment in a timely manner, optimizing temporal physiology and behaviors. Dysregulation of circadian rhythms by genetic and environmental risk factors increases susceptibility to multiple diseases, particularly cancers. A growing number of studies have revealed dynamic crosstalk between circadian clocks and cancer pathways, providing mechanistic insights into the therapeutic utility of circadian rhythms in cancer treatment. This review will discuss the roles of circadian rhythms in cancer pathogenesis, highlighting the recent advances in chronotherapeutic approaches for improved cancer treatment.


Assuntos
Relógios Circadianos , Neoplasias , Ritmo Circadiano/genética , Neoplasias/genética , Neoplasias/terapia
13.
Biology (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35053019

RESUMO

The circadian clock is a fundamental biological timing mechanism that generates nearly 24 h rhythms of physiology and behaviors, including sleep/wake cycles, hormone secretion, and metabolism. Evolutionarily, the endogenous clock is thought to confer living organisms, including humans, with survival benefits by adapting internal rhythms to the day and night cycles of the local environment. Mirroring the evolutionary fitness bestowed by the circadian clock, daily mismatches between the internal body clock and environmental cycles, such as irregular work (e.g., night shift work) and life schedules (e.g., jet lag, mistimed eating), have been recognized to increase the risk of cardiac, metabolic, and neurological diseases. Moreover, increasing numbers of studies with cellular and animal models have detected the presence of functional circadian oscillators at multiple levels, ranging from individual neurons and fibroblasts to brain and peripheral organs. These oscillators are tightly coupled to timely modulate cellular and bodily responses to physiological and metabolic cues. In this review, we will discuss the roles of central and peripheral clocks in physiology and diseases, highlighting the dynamic regulatory interactions between circadian timing systems and multiple metabolic factors.

14.
J Biol Rhythms ; 36(6): 503-531, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547953

RESUMO

Circadian clocks are biological timing mechanisms that generate 24-h rhythms of physiology and behavior, exemplified by cycles of sleep/wake, hormone release, and metabolism. The adaptive value of clocks is evident when internal body clocks and daily environmental cycles are mismatched, such as in the case of shift work and jet lag or even mistimed eating, all of which are associated with physiological disruption and disease. Studies with animal and human models have also unraveled an important role of functional circadian clocks in modulating cellular and organismal responses to physiological cues (ex., food intake, exercise), pathological insults (e.g. virus and parasite infections), and medical interventions (e.g. medication). With growing knowledge of the molecular and cellular mechanisms underlying circadian physiology and pathophysiology, it is becoming possible to target circadian rhythms for disease prevention and treatment. In this review, we discuss recent advances in circadian research and the potential for therapeutic applications that take patient circadian rhythms into account in treating disease.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Cronoterapia , Humanos , Sono
15.
Sci Adv ; 7(7)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33579708

RESUMO

Circadian rhythms are an integral part of physiology, underscoring their relevance for the treatment of disease. We conducted cell-based high-throughput screening to investigate time-of-day influences on the activity of known antitumor agents and found that many compounds exhibit daily rhythms of cytotoxicity concomitant with previously reported oscillations of target genes. Rhythmic action of HSP90 inhibitors was mediated by specific isoforms of HSP90, genetic perturbation of which affected the cell cycle. Furthermore, clock mutants affected the cell cycle in parallel with abrogating rhythms of cytotoxicity, and pharmacological inhibition of the cell cycle also eliminated rhythmic drug effects. An HSP90 inhibitor reduced growth rate of a mouse melanoma in a time-of-day-specific manner, but efficacy was impaired in clock-deficient tumors. These results provide a powerful rationale for appropriate daily timing of anticancer drugs and suggest circadian regulation of the cell cycle within the tumor as an underlying mechanism.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Ciclo Celular , Divisão Celular , Ritmo Circadiano/genética , Camundongos
16.
Sci Rep ; 9(1): 11883, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417156

RESUMO

Post-translational regulation plays a central role in the circadian clock mechanism. However, nucleocytoplasmic translocation of core clock proteins, a key step in circadian timekeeping, is not fully understood. Earlier we found that the NRON scaffolding complex regulates nuclear translocation of NFAT and its signaling. Here, we show that components of the NRON complex also regulate the circadian clock. In peripheral cell clock models, genetic perturbation of the NRON complex affects PER and CRY protein nuclear translocation, dampens amplitude, and alters period length. Further, we show small molecules targeting the NFAT pathway alter nuclear translocation of PER and CRY proteins and impact circadian rhythms in peripheral cells and tissue explants of the master clock in the suprachiasmatic nucleus. Taken together, these studies highlight a key role for the NRON complex in regulating PER/CRY subcellular localization and circadian timekeeping.


Assuntos
Núcleo Celular/metabolismo , Relógios Circadianos/fisiologia , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , RNA Longo não Codificante/genética , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Sinalização do Cálcio , Linhagem Celular , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Modelos Biológicos , Transporte Proteico , Interferência de RNA , Transdução de Sinais
17.
Cell Rep ; 22(13): 3416-3426, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590612

RESUMO

Loss of the Neurofibromatosis 1 (Nf1) protein, neurofibromin, in Drosophila disrupts circadian rhythms of locomotor activity without impairing central clock function, suggesting effects downstream of the clock. However, the relevant cellular mechanisms are not known. Leveraging the discovery of output circuits for locomotor rhythms, we dissected cellular actions of neurofibromin in recently identified substrates. Herein, we show that neurofibromin affects the levels and cycling of calcium in multiple circadian peptidergic neurons. A prominent site of action is the pars intercerebralis (PI), the fly equivalent of the hypothalamus, with cell-autonomous effects of Nf1 in PI cells that secrete DH44. Nf1 interacts genetically with peptide signaling to affect circadian behavior. We extended these studies to mammals to demonstrate that mouse astrocytes exhibit a 24-hr rhythm of calcium levels, which is also attenuated by lack of neurofibromin. These findings establish a conserved role for neurofibromin in intracellular signaling rhythms within the nervous system.


Assuntos
Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Genes da Neurofibromatose 1 , Proteínas do Tecido Nervoso/genética , Proteínas Ativadoras de ras GTPase/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular , Drosophila , Masculino , Neurofibromatose 1/genética
18.
Elife ; 42015 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-26319354

RESUMO

Regulated nuclear translocation of the PER/CRY repressor complex is critical for negative feedback regulation of the circadian clock of mammals. However, the precise molecular mechanism is not fully understood. Here, we report that KPNB1, an importin ß component of the ncRNA repressor of nuclear factor of activated T cells (NRON) ribonucleoprotein complex, mediates nuclear translocation and repressor function of the PER/CRY complex. RNAi depletion of KPNB1 traps the PER/CRY complex in the cytoplasm by blocking nuclear entry of PER proteins in human cells. KPNB1 interacts mainly with PER proteins and directs PER/CRY nuclear transport in a circadian fashion. Interestingly, KPNB1 regulates the PER/CRY nuclear entry and repressor function, independently of importin α, its classical partner. Moreover, inducible inhibition of the conserved Drosophila importin ß in lateral neurons abolishes behavioral rhythms in flies. Collectively, these data show that KPNB1 is required for timely nuclear import of PER/CRY in the negative feedback regulation of the circadian clock.


Assuntos
Núcleo Celular/metabolismo , Relógios Circadianos , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , Proteínas Repressoras/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Drosophila , Retroalimentação Fisiológica , Humanos
19.
Endocrinol Metab (Seoul) ; 29(3): 379-87, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25309798

RESUMO

BACKGROUND: In mammals, the CLOCK/BMAL1 heterodimer is a key transcription factor complex that drives the cyclic expression of clock-controlled genes involved in various physiological functions and behavioral consequences. Recently, a growing number of studies have reported a molecular link between the circadian clock and metabolism. In the present study, we explored the regulatory effects of SIRTUIN1 (SIRT1), an NAD(+)-dependent deacetylase, on CLOCK/BMAL1-mediated clock gene expression. METHODS: To investigate the interaction between SIRT1 and CLOCK/BMAL1, we conducted bimolecular fluorescence complementation (BiFC) analyses supplemented with immunocytochemistry assays. BiFC experiments employing deletion-specific mutants of BMAL1 were used to elucidate the specific domains that are necessary for the SIRT1-BMAL1 interaction. Additionally, luciferase reporter assays were used to delineate the effects of SIRT1 on circadian gene expression. RESULTS: BiFC analysis revealed that SIRT1 interacted with both CLOCK and BMAL1 in most cell nuclei. As revealed by BiFC assays using various BMAL1 deletion mutants, the PAS-B domain of BMAL1 was essential for interaction with SIRT1. Activation of SIRT1 with resveratrol did not exert any significant change on the interaction with the CLOCK/BMAL1 complex. However, promoter analysis using Per1-Luc and Ebox-Luc reporters showed that SIRT1 significantly downregulated both promoter activities. This inhibitory effect was intensified by treatment with resveratrol, indicating a role for SIRT1 and its activator in CLOCK/BMAL1-mediated transcription of clock genes. CONCLUSION: These results suggest that SIRT1 may form a regulatory complex with CLOCK/BMAL1 that represses clock gene expression, probably via deacetylase activity.

20.
J Clin Invest ; 123(12): 5389-400, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24270424

RESUMO

Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator-like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Encéfalo/patologia , Proteínas CLOCK/fisiologia , Ritmo Circadiano/fisiologia , Gliose/genética , Degeneração Neural/fisiopatologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Fatores de Transcrição ARNTL/deficiência , Envelhecimento/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Encéfalo/fisiopatologia , Proteínas CLOCK/deficiência , Córtex Cerebral/patologia , Ritmo Circadiano/genética , Corpo Estriado/patologia , Regulação da Expressão Gênica/fisiologia , Gliose/patologia , Hipocampo/patologia , Homeostase/genética , Homeostase/fisiologia , Locomoção/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes Neurológicos , Degeneração Neural/genética , Proteínas do Tecido Nervoso/deficiência , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/patologia , Oxirredução , Estresse Oxidativo , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/fisiologia , Interferência de RNA , Transtornos do Sono do Ritmo Circadiano/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA