Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 576(7786): 301-305, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31801997

RESUMO

A central aspect of aging research concerns the question of when individuality in lifespan arises1. Here we show that a transient increase in reactive oxygen species (ROS), which occurs naturally during early development in a subpopulation of synchronized Caenorhabditis elegans, sets processes in motion that increase stress resistance, improve redox homeostasis and ultimately prolong lifespan in those animals. We find that these effects are linked to the global ROS-mediated decrease in developmental histone H3K4me3 levels. Studies in HeLa cells confirmed that global H3K4me3 levels are ROS-sensitive and that depletion of H3K4me3 levels increases stress resistance in mammalian cell cultures. In vitro studies identified SET1/MLL histone methyltransferases as redox sensitive units of the H3K4-trimethylating complex of proteins (COMPASS). Our findings implicate a link between early-life events, ROS-sensitive epigenetic marks, stress resistance and lifespan.


Assuntos
Longevidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Caenorhabditis elegans , Regulação para Baixo , Histonas/metabolismo , Larva
2.
Immunity ; 40(5): 747-57, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24792910

RESUMO

The intestinal mucosa promotes T cell responses that might be beneficial for effective mucosal vaccines. However, intestinal resident memory T (Trm) cell formation and function are poorly understood. We found that oral infection with Listeria monocytogenes induced a robust intestinal CD8 T cell response and blocking effector T cell migration showed that intestinal Trm cells were critical for secondary protection. Intestinal effector CD8 T cells were predominately composed of memory precursor effector cells (MPECs) that rapidly upregulated CD103, which was needed for T cell accumulation in the intestinal epithelium. CD103 expression, rapid MPEC formation, and maintenance in intestinal tissues were dependent on T cell intrinsic transforming growth factor ß signals. Moreover, intestinal Trm cells generated after intranasal or intravenous infection were less robust and phenotypically distinct from Trm cells generated after oral infection, demonstrating the critical contribution of infection route for directing the generation of protective intestinal Trm cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Mucosa Intestinal/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/transmissão , Doenças da Boca/microbiologia , Administração Oral , Transferência Adotiva , Animais , Antígenos CD/biossíntese , Movimento Celular/imunologia , Memória Imunológica/imunologia , Cadeias alfa de Integrinas/biossíntese , Mucosa Intestinal/citologia , Listeria monocytogenes/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Crescimento Transformador beta/imunologia
3.
Biochemistry ; 61(1): 1-9, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34928138

RESUMO

Cryo-EM structures of the KMT2A/MLL1 core complex bound on nucleosome core particles (NCPs) suggest unusual rotational dynamics of the MLL1 complex approaching its physiological substrate. However, the functional implication of such dynamics remains unclear. Here, we show that the MLL1 core complex also shows high rotational dynamics bound on the NCP carrying the catalytically inert histone H3 lysine 4 to methionine (K4M) mutation. There are two major binding modes of the MLL1 complex on the NCPK4M. Importantly, disruption of only one of the binding modes compromised the overall MLL1 activity in an NCP-specific manner. We propose that the MLL1 core complex probably exists in an equilibrium of poised and active binding modes. The high rotational dynamics of the MLL1 complex on the NCP is a feature that can be exploited for loci-specific regulation of H3K4 methylation in higher eukaryotes.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Nucleossomos/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/ultraestrutura , Histonas/metabolismo , Humanos , Metilação , Modelos Moleculares , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/ultraestrutura , Ligação Proteica , Conformação Proteica
4.
Lupus ; 31(10): 1245-1253, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35802867

RESUMO

OBJECTIVE: Several clinical trials aimed at treating various autoimmune diseases, including systemic lupus erythematosus (SLE), by introducing mesenchymal stem cells (MSCs) have been conducted. However, with refractory lupus nephritis (LN), the outcomes of MSC transplantation are not well known, and further validation is required. In particular, data concerning the safety and efficacy of LN treatment using bone marrow-derived MSCs (BM-MSCs) are still lacking. METHODS: We identified characteristics of BM-MSCs in terms of cell morphology, chromosomal stability, differentiation capacity, and phenotype through cell passages. The in vivo stability of BM-MSCs was evaluated by single-dose and repeated-dose toxicity tests, tumorigenicity tests, and biodistribution tests using lupus mouse models. Based on the encouraging nonclinical results, we conducted a nonrandomized, open-label, single-arm phase I clinical trial to evaluate the tolerability and safety of a single administration of haploidentical allogeneic BM-MSCs (CS20AT04) in seven LN patients (NCT03174587). We used a classical three + three design to find the optimal dosage. The starting dose was 2.0×106 cells/kg and escalated to 3.0×106 cells/kg if there was no dose-limiting toxicity (DLT). Evaluation of the safety and tolerability was assessed 28 days after the infusion, and the maximum tolerated dose was determined. RESULTS: Properly cultured BM-MSCs showed high proliferation and multipotency, but chromosomal changes were not found. There were two deaths by a rapid administration rate in the high-dose group (2.0×106 cells/head) in a single administration test. BM-MSCs were distributed in the kidneys until Day 7. In the phase I clinical trial, seven LN patients were enrolled. Participants received BM-MSCs through intravenous infusion. There was no DLT at both initial dose (2.0×106 cells/kg) and escalated dose (3.0×106 cells/kg). One patient was not administered the full 2.0×106 cells/kg dose because of a technical error during infusion. This patient did not show DLT. Three adverse events were reported, namely, one diarrhea, one toothache, and one arthralgia, and all were considered NCI-CTC grade I events. CONCLUSION: We defined the characteristics of BM-MSCs and identified their safety and tolerability in both animal models and a phase I clinical trial. The maximum tolerated dose was determined to be 3.0×106 cells/kg in patients with LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Medula Óssea , Modelos Animais de Doenças , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/terapia , Nefrite Lúpica/metabolismo , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Distribuição Tecidual
5.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068650

RESUMO

The complement pathway is involved in eliminating antigen immune complexes. However, the role of the C3 complement system remains largely unknown in influenza virus M2 extracellular (M2e) domain or hemagglutinin (HA) vaccine-mediated protection after vaccination. Using a C3 knockout (C3 KO) mouse model, we found that complement protein C3 was required for effective induction of immune responses to vaccination with M2e-based or HA-based vaccines, which include isotype class-switched antibodies and effector CD4 and CD8 T cell responses. C3 KO mice after active immunization with cross-protective nonneutralizing M2e-based vaccine were not protected against influenza virus, although low levels of M2e-specific antibodies were protective after passive coadministration with virus in wild-type mice. In contrast, C3 KO mice that were immunized with strain-specific neutralizing HA-based vaccine were protected against homologous virus challenge despite lower levels of HA antibody responses. C3 KO mice showed impaired maintenance of innate immune cells and a defect in innate immune responses upon exposure to antigens. The findings in this study suggest that C3 is required for effective induction of humoral and cellular adaptive immune responses as well as protective immunity after nonneutralizing influenza M2e vaccination.IMPORTANCE Complement is the well-known innate immune defense system involved in the opsonization and lysis of pathogens but is less studied in establishing adaptive immunity after vaccination. Influenza virus HA-based vaccination confers protection via strain-specific neutralizing antibodies, whereas M2e-based vaccination induces a broad spectrum of protection by immunity against the conserved M2e epitopes. This study revealed the critical roles of C3 complement in inducing humoral and cellular immune responses after immunization with M2e or HA vaccines. C3 was found to be required for protection by M2e-based but not by HA-based active vaccination as well as for maintaining innate antigen-presenting cells. Findings in this study have insight into better understanding the roles of C3 complement in inducing effective innate and adaptive immunity as well as in conferring protection by cross-protective conserved M2e vaccination.


Assuntos
Complemento C3/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Celular , Imunidade Heteróloga , Imunidade Humoral , Vacinas contra Influenza/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Complemento C3/deficiência , Proteção Cruzada , Vacinas contra Influenza/administração & dosagem , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
J Immunol ; 198(1): 279-291, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881702

RESUMO

Vaccine adjuvant effects in the CD4-deficient condition largely remain unknown. We investigated the roles of combined monophosphoryl lipid A (MPL) and aluminum hydroxide (Alum) adjuvant (MPL+Alum) in inducing immunity after immunization of CD4 knockout (CD4KO) and wild-type (WT) mice with T-dependent influenza vaccine. MPL+Alum adjuvant mediated IgG isotype-switched Abs, IgG-secreting cell responses, and protection in CD4KO mice, which were comparable to those in WT mice. In contrast, Alum adjuvant effects were dependent on CD4+ T cells. MPL+Alum adjuvant was effective in recruiting monocytes and neutrophils as well as in protecting macrophages from Alum-mediated cell loss at the injection site in CD4KO mice. MPL+Alum appeared to attenuate MPL-induced inflammatory responses in WT mice, likely improving the safety. Additional studies in CD4-depleted WT mice and MHC class II KO mice suggest that MHC class II+ APCs contribute to providing alternative B cell help in the CD4-deficient condition in the context of MPL+Alum-adjuvanted vaccination.


Assuntos
Adjuvantes Imunológicos/farmacologia , Hidróxido de Alumínio/farmacologia , Imunoglobulina G/biossíntese , Vacinas contra Influenza/imunologia , Lipídeo A/análogos & derivados , Hidróxido de Alumínio/imunologia , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Switching de Imunoglobulina/efeitos dos fármacos , Lipídeo A/imunologia , Lipídeo A/farmacologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
J Immunol ; 196(6): 2637-45, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26864033

RESUMO

The currently used vaccine strategy to combat influenza A virus (IAV) aims to provide highly specific immunity to circulating seasonal IAV strains. However, the outbreak of 2009 influenza pandemic highlights the danger in this strategy. In this study, we tested the hypothesis that universal vaccination that offers broader but weaker protection would result in cross protective T cell responses after primary IAV infection, which would subsequently provide protective immunity against future pandemic strains. Specifically, we used tandem repeat extracellular domain of M2 (M2e) epitopes on virus-like particles (M2e5x VLP) that induced heterosubtypic immunity by eliciting Abs to a conserved M2e epitope. M2e5x VLP was found to be superior to strain-specific current split vaccine in conferring heterosubtypic cross protection and in equipping the host with cross-protective lung-resident nucleoprotein-specific memory CD8(+) T cell responses to a subsequent secondary infection with a new pandemic potential strain. Immune correlates for subsequent heterosubtypic immunity by M2e5x VLP vaccination were found to be virus-specific CD8(+) T cells secreting IFN-γ and expressing lung-resident memory phenotypic markers CD69(+) and CD103(+) as well as M2e Abs. Hence, vaccination with M2e5x VLP may be developable as a new strategy to combat future pandemic outbreaks.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos Imunodominantes/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Proteínas da Matriz Viral/administração & dosagem , Animais , Linfócitos T CD8-Positivos/virologia , Reações Cruzadas , Feminino , Humanos , Epitopos Imunodominantes/química , Memória Imunológica , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Interferon gama/metabolismo , Ativação Linfocitária , Vacinação em Massa/métodos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Pandemias , Proteínas da Matriz Viral/química , Vírion/química
8.
J Virol ; 90(15): 6746-6758, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194758

RESUMO

UNLABELLED: An integrin-associated protein CD47, which is a ligand for the inhibitory receptor signal regulatory protein α, is expressed on B and T cells, as well as on most innate immune cells. However, the roles of CD47 in the immune responses to viral infection or vaccination remain unknown. We investigated the role of CD47 in inducing humoral immune responses after intranasal infection with virus or immunization with influenza virus-like particles (VLPs). Virus infection or vaccination with VLPs containing hemagglutinin from A/PR8/34 influenza virus induced higher levels of antigen-specific IgG2c isotype dominant antibodies in CD47-deficient (CD47KO) mice than in wild-type (WT) mice. CD47KO mice with vaccination showed greater protective efficacy against lethal challenge, as evidenced by no loss in body weight and reduced lung viral titers compared to WT mice. In addition, inflammatory responses which include cytokine production, leukocyte infiltrates, and gamma interferon-producing CD4(+) T cells, as well as an anti-inflammatory cytokine (interleukin-10), were reduced in the lungs of vaccinated CD47KO mice after challenge with influenza virus. Analysis of lymphocytes indicated that GL7(+) germinal center B cells were induced at higher levels in the draining lymph nodes of CD47KO mice compared to those in WT mice. Notably, CD47KO mice exhibited significant increases in the numbers of antigen-specific memory B cells in spleens and plasma cells in bone marrow despite their lower levels of background IgG antibodies. These results suggest that CD47 plays a role as a negative regulator in inducing protective immune responses to influenza vaccination. IMPORTANCE: Molecular mechanisms that control B cell activation to produce protective antibodies upon viral vaccination remain poorly understood. The CD47 molecule is known to be a ligand for the inhibitory receptor signal regulatory protein α and expressed on the surfaces of most immune cell types. CD47 was previously demonstrated to play an important role in modulating the migration of monocytes, neutrophils, polymorphonuclear neutrophils, and dendritic cells into the inflamed tissues. The results of this study demonstrate new roles of CD47 in negatively regulating the induction of protective IgG antibodies, germinal center B cells, and plasma cells secreting antigen-specific antibodies, as well as macrophages, upon influenza vaccination and challenge. As a consequence, vaccinated CD47-deficient mice demonstrated better control of influenza viral infection and enhanced protection. This study provides insights into understanding the regulatory functions of CD47 in inducing adaptive immunity to vaccination.


Assuntos
Imunidade Adaptativa/imunologia , Antígeno CD47/fisiologia , Imunidade Humoral/imunologia , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Orthomyxoviridae/imunologia , Vacinação/métodos , Animais , Anticorpos Antivirais/sangue , Células Cultivadas , Imunização , Memória Imunológica/imunologia , Interleucina-10/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia
9.
J Virol ; 90(15): 6976-6988, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226368

RESUMO

UNLABELLED: CD4(+) T cells play a central role in orchestrating adaptive immunity. To better understand the roles of CD4(+) T cells in the effects of adjuvants, we investigated the efficacy of a T-dependent influenza virus split vaccine with MF59 or alum in CD4 knockout (CD4KO) and wild-type (WT) mice. CD4(+) T cells were required for the induction of IgG antibody responses to the split vaccine and the effects of alum adjuvant. In contrast, MF59 was found to be highly effective in raising isotype-switched IgG antibodies to a T-dependent influenza virus split vaccine in CD4KO mice or CD4-depleted WT mice equivalent to those in intact WT mice, thus overcoming the deficiency of CD4(+) T cells in helping B cells and inducing immunity against influenza virus. Vaccination with the MF59-adjuvanted influenza virus vaccine was able to induce protective CD8(+) T cells and long-lived antibody-secreting cells in CD4KO mice. The effects of MF59 adjuvant in CD4KO mice might be associated with uric acid, inflammatory cytokines, and the recruitment of multiple immune cells at the injection site, but their cellularity and phenotypes were different from those in WT mice. These findings suggest a new paradigm of CD4-independent adjuvant mechanisms, providing the rationales to improve vaccine efficacy in infants, the elderly, immunocompromised patients, as well as healthy adults. IMPORTANCE: MF59-adjuvanted influenza vaccines were licensed for human vaccination, but the detailed mechanisms are not fully elucidated. CD4(+) T cells are required to induce antibody isotype switching and long-term memory responses. In contrast, we discovered that MF59 was highly effective in inducing isotype-switched IgG antibodies and long-term protective immune responses to a T-dependent influenza vaccine independent of CD4(+) T cells. These findings are highly significant for the following reasons: (i) MF59 can overcome a defect of CD4(+) T cells in inducing protective immunity to vaccination with a T-dependent influenza virus vaccine; (ii) a CD4-independent pathway can be an alternative mechanism for certain adjuvants such as MF59; and (iii) this study has significant implications for improving vaccine efficacies in young children, the elderly, and immunocompromised populations.


Assuntos
Anticorpos/metabolismo , Linfócitos T CD4-Positivos , Imunoglobulina G/imunologia , Isotipos de Imunoglobulinas/imunologia , Vacinas contra Influenza/administração & dosagem , Pneumonia/prevenção & controle , Polissorbatos/administração & dosagem , Esqualeno/administração & dosagem , Linfócitos T/imunologia , Adjuvantes Imunológicos , Animais , Células Produtoras de Anticorpos , Antígenos CD4/fisiologia , Células Cultivadas , Feminino , Imunização/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Pneumonia/etiologia
10.
J Immunol ; 194(5): 2407-14, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25637015

RESUMO

Tissue-resident memory CD8 T cells are a unique subset of virus-specific CTLs that bolster local immune responses after becoming lodged in previously infected tissues. These cells provide enhanced protection by intercepting returning pathogens before a new infection gets established. In contrast, central memory CD8 T cells circulate in the bloodstream and proliferate in secondary lymphoid organs before replenishing effector and memory CD8 T cell populations in remote parts of the body. Both populations of virus-specific memory CD8 T cells participate in immunity to influenza virus infection; however, the signaling pathways that instruct developing memory CD8 T cells to distribute to specific tissues are poorly defined. We show that TGF-ß promotes the development of pulmonary tissue-resident memory T cells via a signaling pathway that does not require the downstream signaling intermediate Sma- and Mad-related protein (Smad)4. In contrast, circulating memory CD8 T cells have no requirement for TGF-ß but show signs of arrested development in the absence of Smad4, including aberrant CD103 expression. These signaling pathways alter the distribution of virus-specific CTLs in the lungs but do not prevent robust cytokine responses. Our data show that Smad4 is required for normal differentiation of multiple subsets of virus-specific CD8 T cells. In normal circumstances, Smad4 may be activated via a pathway that bypasses the TGF-ß receptor. Improved understanding of these signaling pathways could be used to augment vaccine-induced immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linhagem da Célula/imunologia , Memória Imunológica , Pulmão/imunologia , Proteína Smad4/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular , Regulação da Expressão Gênica , Vírus da Influenza A/imunologia , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/imunologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Transdução de Sinais , Proteína Smad4/deficiência , Proteína Smad4/genética , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/farmacologia , Quimeras de Transplante
11.
J Am Chem Soc ; 138(32): 10163-72, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27452076

RESUMO

In this study, the effector role of Pdx (putidaredoxin) on cytochrome P450cam conformation is refined by attaching two different spin labels, MTSL or BSL (bifunctional spin-label) onto the F or G helices and using DEER (double electron-electron resonance) to measure the distance between labels. Recent EPR and crystallographic studies have observed that oxidized Pdx induces substrate-bound P450cam to change from the closed to the open state. However, this change was not observed by DEER in the reduced Pdx complex with carbon-monoxide-bound P450cam (Fe(2+)CO). In addition, recent NMR studies have failed to observe a change in P450cam conformation upon binding Pdx. Hence, resolving these issues is important for a full understanding the effector role of Pdx. Here we show that oxidized Pdx induces camphor-bound P450cam to shift from the closed to the open conformation when labeled on either the F or G helices with MTSL. BSL at these sites can either narrow the distance distribution widths dramatically or alter the extent of the conformational change. In addition, we report DEER spectra on a mixed oxidation state containing oxidized Pdx and ferrous CO-bound P450cam, showing that P450cam remains closed. This indicates that CO binding to the heme prevents P450cam from opening, overriding the influence exerted by Pdx binding. Finally, we report the open form P450cam crystal structure with substrate bound, which suggests that crystal packing effects may prevent conformational conversion. Using multiple labeling approaches, DEER provides a unique perspective to resolve how the conformation of P450cam depends on Pdx and ligand states.


Assuntos
Cânfora 5-Mono-Oxigenase/química , Ferredoxinas/química , Sítios de Ligação , Cânfora/química , Monóxido de Carbono/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Mutação , Oxirredução , Oxigênio/química , Ligação Proteica , Conformação Proteica , Pseudomonas putida/química , Marcadores de Spin
12.
J Virol ; 89(22): 11692-705, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26355098

RESUMO

UNLABELLED: There is no licensed vaccine against respiratory syncytial virus (RSV) since the failure of formalin-inactivated RSV (FI-RSV) due to its vaccine-enhanced disease. We investigated immune correlates conferring protection without causing disease after intranasal immunization with virus-like particle vaccine containing the RSV fusion protein (F VLP) in comparison to FI-RSV and live RSV. Upon RSV challenge, FI-RSV immune mice showed severe weight loss, eosinophilia, and histopathology, and RSV reinfection also caused substantial RSV disease despite their viral clearance. In contrast, F VLP immune mice showed least weight loss and no sign of histopathology and eosinophilia. High levels of interleukin-4-positive (IL-4(+)) and tumor necrosis factor alpha-positive (TNF-α(+)) CD4(+) T cells were found in FI-RSV immune mice, whereas gamma interferon-positive (IFN-γ(+)) and TNF-α(+) CD4(+) T cells were predominantly detected in live RSV-infected mice. More importantly, in contrast to FI-RSV and live RSV that induced higher levels of CD11b(+) dendritic cells, F VLP immunization induced CD8α(+) and CD103(+) dendritic cells, as well as F-specific IFN-γ(+) and TNF-α(+) CD8(+) T cells. These results suggest that F VLP can induce protection without causing pulmonary RSV disease by inducing RSV neutralizing antibodies, as well as modulating specific subsets of dendritic cells and CD8 T cell immunity. IMPORTANCE: It has been a difficult challenge to develop an effective and safe vaccine against respiratory syncytial virus (RSV), a leading cause of respiratory disease. Immune correlates conferring protection but preventing vaccine-enhanced disease remain poorly understood. RSV F virus-like particle (VLP) would be an efficient vaccine platform conferring protection. Here, we investigated the protective immune correlates without causing disease after intranasal immunization with RSV F VLP in comparison to FI-RSV and live RSV. In addition to inducing RSV neutralizing antibodies responsible for clearing lung viral loads, we show that modulation of specific subsets of dendritic cells and CD8 T cells producing T helper type 1 cytokines are important immune correlates conferring protection but not causing vaccine-enhanced disease.


Assuntos
Células Dendríticas/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Células Th1/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Feminino , Humanos , Imunização , Cadeias alfa de Integrinas/metabolismo , Interferon gama/metabolismo , Interleucina-4/metabolismo , Pulmão/patologia , Pulmão/virologia , Pneumopatias/imunologia , Pneumopatias/virologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vírus Sincicial Respiratório Humano , Células Sf9 , Spodoptera , Fator de Necrose Tumoral alfa/metabolismo , Carga Viral/imunologia
13.
Am J Physiol Regul Integr Comp Physiol ; 311(5): R906-R916, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27558316

RESUMO

Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1ß, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1ß, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Pulmão/imunologia , Redes e Vias Metabólicas/imunologia , Metaboloma/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia Viral/imunologia , Animais , Feminino , Ensaios de Triagem em Larga Escala , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/virologia
14.
Nanomedicine ; 12(3): 759-770, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26656630

RESUMO

A desirable vaccine against respiratory syncytial virus (RSV) should induce neutralizing antibodies without eliciting abnormal T cell responses to avoid vaccine-enhanced pathology. In an approach to deliver RSV neutralizing epitopes without RSV-specific T cell antigens, we genetically engineered chimeric influenza virus expressing RSV F262-276 neutralizing epitopes in the globular head domain as a chimeric hemagglutinin (HA) protein. Immunization of mice with formalin-inactivated recombinant chimeric influenza/RSV F262-276 was able to induce RSV protective neutralizing antibodies and lower lung viral loads after challenge. Formalin-inactivated RSV immune mice showed high levels of pulmonary inflammatory cytokines, macrophages, IL-4-producing T cells, and extensive histopathology. However, RSV-specific T cell responses and enhancement of pulmonary histopathology were not observed after RSV infection of inactivated chimeric influenza/RSV F262-276. This study provides evidence that an inactivated vaccine platform of chimeric influenza/RSV virus can be developed into a safe RSV vaccine candidate without priming RSV-specific T cells and immunopathology. FROM THE CLINICAL EDITOR: Respiratory syncytial virus (RSV) is a major cause of respiratory tract illness and morbidity in children. Hence, there is a need to develop an effective vaccine against this virus. In this article, the authors engineered chimeric influenza virus to express RSV neutralizing epitopes. The positive findings in in-vivo experiments provide a beginning for future clinical trials and perhaps eventual product realization.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Hemaglutininas Virais/imunologia , Orthomyxoviridae/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Animais , Linhagem Celular , Epitopos/genética , Epitopos/uso terapêutico , Feminino , Engenharia Genética/métodos , Hemaglutininas Virais/genética , Hemaglutininas Virais/uso terapêutico , Humanos , Imunização , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Orthomyxoviridae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/uso terapêutico , Vírus Sinciciais Respiratórios/genética
15.
J Virol ; 88(14): 7764-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24760891

RESUMO

Major histocompatibility complex class II-deficient (MHC-II KO; Aß(-/-)) mice were used to assess the roles of MHC-II molecules in inducing protective immune responses to vaccination. After vaccination with influenza A/PR8 virus-like particle (VLP) vaccine, in vivo and in vitro vaccine antigen-specific IgG isotype antibodies were not detected in MHC-II KO mice, which is quite different from CD4 T cell-deficient mice that induced vaccine-specific IgG antibodies. The deficiency in MHC-II did not significantly affect the induction of antigen-specific IgM antibody in sera. MHC-II KO mice that were vaccinated with influenza VLP, whole inactivated influenza virus, or live attenuated influenza virus vaccines were not protected against lethal infection with influenza A/PR8 virus. Adoptive transfer of fractionated spleen cells from wild-type mice to MHC-II KO mice indicated that CD43(+) cell populations with MHC-II contributed more significantly to producing vaccine-specific IgG antibodies than CD43(-) B220(+) conventional B cell or CD4 T cell populations, as well as conferring protection against lethal infection. Bone marrow-derived dendritic cells from MHC-II KO mice showed a significant defect in producing interleukin-6 and tumor necrosis factor alpha cytokines. Thus, results indicate that MHC-II molecules play multiple roles in inducing protective immunity to influenza vaccination. Importance: Major histocompatibility complex class II (MHC-II) has been known to activate CD4 T helper immune cells. A deficiency in MHC-II was considered to be equivalent to the lack of CD4 T cells in developing host immune responses to pathogens. However, the roles of MHC-II in inducing protective immune responses to vaccination have not been well understood. In the present study, we demonstrate that MHC-II-deficient mice showed much more significant defects in inducing protective antibody responses to influenza vaccination than CD4 T cell-deficient mice. Further analysis showed that CD43 marker-positive immune cells with MHC-II, as well as an innate immunity-simulating adjuvant, could rescue some defects in inducing protective immune responses in MHC-II-deficient mice. These results have important implications for our understanding of host immunity-inducing mechanisms to vaccination, as well as in developing effective vaccines and adjuvants.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Leucócitos Mononucleares/imunologia , Transferência Adotiva , Animais , Anticorpos Antivirais/sangue , Feminino , Antígenos de Histocompatibilidade Classe II/análise , Antígenos de Histocompatibilidade Classe II/genética , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Vacinas contra Influenza/administração & dosagem , Leucócitos Mononucleares/química , Leucossialina/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia
16.
Protein Expr Purif ; 110: 89-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25687285

RESUMO

We report an optimized method to purify and reconstitute histone octamer, which utilizes high expression of histones in inclusion bodies but eliminates the time consuming steps of individual histone purification. In the newly modified protocol, Xenopus laevis H2A, H2B, H3, and H4 are expressed individually into inclusion bodies of bacteria, which are subsequently mixed together and denatured in 8M guanidine hydrochloride. Histones are refolded and reconstituted into soluble octamer by dialysis against 2M NaCl, and metal-affinity purified through an N-terminal polyhistidine-tag added on the H2A. After cleavage of the polyhistidine-tag, histone octamer is further purified by size exclusion chromatography. We show that the nucleosomes reconstituted using the purified histone octamer above are fully functional. They serve as effective substrates for the histone methyltransferases DOT1L and MLL1. Small angle X-ray scattering further confirms that the reconstituted nucleosomes have correct structural integration of histone octamer and DNA as observed in the X-ray crystal structure. Our new protocol enables rapid reconstitution of histone octamer with an optimal yield. We expect this simplified approach to facilitate research using recombinant nucleosomes in vitro.


Assuntos
Proteínas de Anfíbios/química , Histonas/química , Corpos de Inclusão/química , Proteínas Recombinantes de Fusão/química , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/isolamento & purificação , Animais , Linhagem Celular , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Guanidina/química , Histona-Lisina N-Metiltransferase/química , Histonas/genética , Histonas/isolamento & purificação , Humanos , Metiltransferases/química , Modelos Moleculares , Proteína de Leucina Linfoide-Mieloide/química , Nucleossomos/química , Nucleossomos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Multimerização Proteica , Redobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Cloreto de Sódio/química , Solubilidade , Xenopus laevis/metabolismo
17.
Nanomedicine ; 11(1): 99-108, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25109662

RESUMO

Respiratory syncytial virus (RSV) is an important human pathogen. Expression of virus structural proteins produces self-assembled virus-like nanoparticles (VLP). We investigated immune phenotypes after RSV challenge of immunized mice with VLP containing RSV F and G glycoproteins mixed with F-DNA (FdFG VLP). In contrast to formalin-inactivated RSV (FI-RSV) causing vaccination-associated eosinophilia, FdFG VLP immunization induced low bronchoalveolar cellularity, higher ratios of CD11c(+) versus CD11b(+) phenotypic cells and CD8(+) T versus CD4(+) T cells secreting interferon (IFN)-γ, T helper type-1 immune responses, and no sign of eosinophilia upon RSV challenge. Furthermore, RSV neutralizing activity, lung viral clearance, and histology results suggest that FdFG VLP can be comparable to live RSV in conferring protection against RSV and in preventing RSV disease. This study provides evidence that a combination of recombinant RSV VLP and plasmid DNA may have a potential anti-RSV prophylactic vaccine inducing balanced innate and adaptive immune responses.


Assuntos
Vacinas Anticâncer/química , Nanopartículas/química , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/química , Vacinas de DNA/química , Animais , Líquido da Lavagem Broncoalveolar , Antígeno CD11b/metabolismo , Antígeno CD11c/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Ensaio de Imunoadsorção Enzimática , Eosinofilia/virologia , Feminino , Glicoproteínas/química , Imunização , Imunoglobulina G/química , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Nanotecnologia , Fenótipo , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios
18.
Proc Natl Acad Sci U S A ; 109(32): 12888-93, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22826259

RESUMO

Although cytochrome P450cam from Pseudomonas putida, the archetype for all heme monooxygenases, has long been known to have a closed active site, recent reports show that the enzyme can also be crystallized in at least two clusters of open conformations. This suggests that the enzyme may undergo significant conformational changes during substrate binding and catalytic turnover. However, these conformations were observed in the crystalline state, and information is needed about the conformations that are populated in solution. In this study, double electron-electron resonance experiments were performed to observe substrate-induced changes in distance as measured by the dipolar coupling between spin labels introduced onto the surface of the enzyme on opposite sides of the substrate access channel. The double electron-electron resonance data show a decrease of 0.8 nm in the distance between spin labels placed at S48C and S190C upon binding the substrate camphor. A rotamer distribution model based on the crystal structures adequately describes the observed distance distributions. These results demonstrate conclusively that, in the physiologically relevant solution state, the substrate-free enzyme exists in the open P450cam-O conformation and that camphor binding results in conversion to the closed P450cam-C form. This approach should be useful for investigating many other P450s, including mammalian forms, in which the role of conformational change is of central importance but not well understood.


Assuntos
Cânfora 5-Mono-Oxigenase/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Pseudomonas putida/enzimologia , Cânfora 5-Mono-Oxigenase/metabolismo , Cristalografia , Espectroscopia de Ressonância de Spin Eletrônica , Marcadores de Spin
19.
Immunology ; 142(4): 624-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24645831

RESUMO

The generation of memory B cells by vaccination plays a critical role in maintaining antigen-specific antibodies and producing antibody responses upon re-exposure to a pathogen. B-cell populations contributing to antibody production and protection by vaccination remain poorly defined. We used influenza virus-like particle (VLP) vaccine in a transgenic mouse model that would identify germinal centre-derived memory B cells with the expression of yellow fluorescent protein (YFP(+) cells). Immunization with influenza VLP vaccine did not induce significant increases in YFP(+) cells although vaccine antigen-specific antibodies in sera were found to confer protection against a lethal dose of influenza A virus (A/PR8). In addition, CD43(+)  B220(-) populations with low YFP(+) cells mainly contributed to the production of vaccine antigen-specific IgG isotype-switched antibodies whereas CD43(-)  B220(+) populations with high YFP(+) cells were able to produce vaccine antigen-specific IgM antibodies. Challenge infection of immunized transgenic mice with live influenza A virus resulted in significant increases in YFP(+) cells in the B220(-) populations of spleen and bone marrow cells. These results suggest that CD43(+)  B220(-) B cells generated by vaccination are important for producing influenza vaccine antigen-specific antibodies and conferring protection.


Assuntos
Antígenos Virais/imunologia , Subpopulações de Linfócitos B/imunologia , Memória Imunológica , Vacinas contra Influenza/imunologia , Animais , Antígenos Virais/farmacologia , Subpopulações de Linfócitos B/patologia , Vacinas contra Influenza/farmacologia , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Leucossialina/genética , Leucossialina/imunologia , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/prevenção & controle
20.
Immunology ; 143(2): 300-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24773389

RESUMO

The ectodomain of matrix protein 2 (M2e) of influenza virus is considered a rational target for a universal influenza A vaccine. To better understand M2e immune-mediated protection, Fc receptor common γ chain deficient (FcRγ(-/-) ) and wild-type mice were immunized with a tandem repeat of M2e presented on virus-like particles (M2e5x VLP). Levels of M2e-specific antibodies that were induced in FcRγ(-/-) mice after immunization with M2e5x VLP were similar to those in wild-type mice. In addition, M2e antibodies induced in FcRγ(-/-) mice were found to be equally protective as those induced in wild-type mice. However, M2e5x VLP-immunized FcRγ(-/-) mice were not well protected, as shown by severe weight loss, higher lung viral titres and interleukin-6 inflammatory cytokine production upon influenza virus challenge compared with M2e5x VLP-immunized wild-type mice. Importantly, FcRγ(-/-) mice that were immunized with inactivated influenza virus induced haemagglutination inhibition activity and were well protected without a significant weight loss. Interestingly, interferon-γ-producing CD4 T and CD8 T cells were found to be prevalent in lungs from M2e5x VLP-immunized FcRγ(-/-) mice, which appeared to be correlated with a faster recovery after infection. These results indicate that Fc receptors play a primary role in conferring M2e-specific antibody-mediated protection whereas T cells may contribute to the recovery at later stages of infection.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Influenza/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Receptores de IgG/metabolismo , Vacinação , Proteínas da Matriz Viral/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hemaglutinação , Mediadores da Inflamação/sangue , Vacinas contra Influenza/administração & dosagem , Interferon gama/metabolismo , Interleucina-6/sangue , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Receptores de IgG/deficiência , Receptores de IgG/genética , Indução de Remissão , Fatores de Tempo , Carga Viral , Proteínas da Matriz Viral/administração & dosagem , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA