Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(11): 549, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241929

RESUMO

Cell fusion of female and male gametes is the climax of sexual reproduction. In many organisms, the Hapless 2 (HAP2) family of proteins play a critical role in gamete fusion. We find that Plasmodium falciparum, the causative agent of human malaria, expresses two HAP2 proteins: PfHAP2 and PfHAP2p. These proteins are present in stage V gametocytes and localize throughout the flagellum of male gametes. Gene deletion analysis and genetic crosses show that PfHAP2 and PfHAP2p individually are essential for male fertility and thereby, parasite transmission to the mosquito. Using a cell fusion assay, we demonstrate that PfHAP2 and PfHAP2p are both authentic plasma membrane fusogens. Our results establish nonredundant essential roles for PfHAP2 and PfHAP2p in mediating gamete fusion in Plasmodium and suggest avenues in the design of novel strategies to prevent malaria parasite transmission from humans to mosquitoes.


Assuntos
Malária , Parasitos , Animais , Membrana Celular , Feminino , Fertilização , Células Germinativas/metabolismo , Humanos , Masculino , Plasmodium falciparum/genética
2.
Mol Biochem Parasitol ; 248: 111447, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34998927

RESUMO

Fertilization is a central event during the life cycle of most eukaryotic organisms and involves gamete recognition and fusion, ultimately resulting in zygote formation. Gamete fertilization in the malaria-causing Plasmodium parasites occurs inside the mosquito midgut and represents a major bottleneck in the life cycle. Cysteine Rich Secretory Proteins (CRISPs) are key molecules involved in fertilization in vertebrates and the presence of a CRISP ortholog in human malaria infective Plasmodium falciparum suggested a possible role in fertilization. Strikingly, P. falciparum CRISP exhibited a unique terminal localization in the male microgamete. Parasites with a CRISP gene deletion (P. falciparum crisp-) proliferated asexually similar to wildtype NF54 parasites and differentiated into gametocytes. Further analysis showed that Plasmodium falciparum crisp- gametocytes underwent exflagellation to form male gametes and no apparent defect in transmission to the mosquito vector was observed. These data show that P. falciparum CRISP is a marker for the apical end of the microgamete and that it might only have an ancillary or redundant function in the male sexual stages.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Cisteína/metabolismo , Células Germinativas , Humanos , Estágios do Ciclo de Vida , Malária Falciparum/parasitologia , Masculino , Mosquitos Vetores , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
3.
Front Cell Dev Biol ; 10: 825247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465336

RESUMO

Plasmodium falciparum sexual stage gametocytes are critical for parasite transmission from the human host to the mosquito vector. Mature gametocytes generate fertile male (micro-) or female (macro-) gametes upon activation inside the mosquito midgut. While a number of parasite genes have been described that are critical for P. falciparum gametogenesis and fertility, no parasite gene has been shown to have a unique function in macrogametes. The genome of P. falciparum encodes numerous RNA-binding proteins. We identified a novel protein containing a putative RNA-binding domain, which we named Macrogamete-Contributed Factor Essential for Transmission (MaCFET). This protein is expressed in the asexual and sexual stages. Parasites that carry a deletion of MaCFET (Pfmacfet¯), developed normally as asexual stages, indicating that its function is not essential for the asexual proliferation of the parasite in vitro. Furthermore, Pfmacfet¯ male and female gametocytes developed normally and underwent activation to form microgametes and macrogametes. However, by utilizing genetic crosses, we demonstrate that Pfmacfet¯ parasites suffer a complete female-specific defect in successful fertilization. Therefore, PfMaCFET is a critical female-contributed factor for parasite transmission to the mosquito. Based on its putative RNA-binding properties, PfMaCFET might be in involved in the regulation of mRNAs that encode female-specific functions for fertilization or female-contributed factors needed post fertilization.

4.
Microbiol Spectr ; 10(5): e0214122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094218

RESUMO

Serine/arginine-rich protein kinases (SRPKs) are cell cycle-regulated serine/threonine protein kinases and are important regulators of splicing factors. In this study, we functionally characterize SRPK1 of the human malaria parasite Plasmodium falciparum. P. falciparum SRPK1 (PfSRPK1) was expressed in asexual blood-stage and sexual-stage gametocytes. Pfsrpk1- parasites formed asexual schizonts that generated far fewer merozoites than wild-type parasites, causing reduced replication rates. Pfsrpk1- parasites also showed a severe defect in the differentiation of male gametes, causing a complete block in parasite transmission to mosquitoes. RNA sequencing (RNA-seq) analysis of wild-type PfNF54 and Pfsrpk1- stage V gametocytes suggested a role for PfSRPK1 in regulating transcript splicing and transcript abundance of genes coding for (i) microtubule/cilium morphogenesis-related proteins, (ii) proteins involved in cyclic nucleotide metabolic processes, (iii) proteins involved in signaling such as PfMAP2, (iv) lipid metabolism enzymes, (v) proteins of osmophilic bodies, and (vi) crystalloid components. Our study reveals an essential role for PfSRPK1 in parasite cell morphogenesis and suggests this kinase as a target to prevent malaria transmission from humans to mosquitoes. IMPORTANCE Plasmodium sexual stages represent a critical bottleneck in the parasite life cycle. Gametocytes taken up in an infectious blood meal by female anopheline mosquito get activated to form gametes and fuse to form short-lived zygotes, which transform into ookinetes to infect mosquitoes. In the present study, we demonstrate that PfSRPK1 is important for merozoite formation and critical for male gametogenesis and is involved in transcript homeostasis for numerous parasite genes. Targeting PfSRPK1 and its downstream pathways may reduce parasite replication and help achieve effective malaria transmission-blocking strategies.


Assuntos
Malária Falciparum , Plasmodium falciparum , Proteínas Serina-Treonina Quinases , Proteínas de Protozoários , Animais , Feminino , Humanos , Masculino , Arginina , Soluções Cristaloides , Células Germinativas , Malária Falciparum/parasitologia , Nucleotídeos Cíclicos , Plasmodium falciparum/genética , Proteínas Quinases , Proteínas Serina-Treonina Quinases/genética , Fatores de Processamento de RNA , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA