RESUMO
Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date. Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI including enhancing tumor, non-enhancing tumor core, and surrounding nonenhancing T2/FLAIR hyperintensity. Models will be evaluated on separate validation and held-out test datasets using standardized metrics utilized across the BraTS 2023 series of challenges including the Dice similarity coefficient and Hausdorff distance. The models developed during the course of this challenge will aid in incorporation of automated meningioma MRI segmentation into clinical practice, which will ultimately improve care of patients with meningioma.
RESUMO
UNLABELLED: Juvenile neuronal ceroid lipofuscinosis (JNCL, CLN3) is an inherited lysosomal disease. We used longitudinal MRI, for the first time, to evaluate the rate of brain volume alterations in JNCL. Six patients (mean ages of 12.4 years and 17.3 years) and 12 healthy controls were studied twice with 1.5 T MRI. White matter (WM), gray matter (GM) and CSF volumes were measured from the sets of T1-weighted 3-dimensional MR images using a fully automated image-processing procedure. The brain volume alterations were calculated as percentage change per year. The GM and whole brain volumes decreased and the CSF volume increased significantly more in the patients than in controls (p-values for the null hypothesis of equal means were 0.001, 0.004, and 0.005, respectively). We found no difference in the WM volume change between the populations. In patients, the GM volume decreased 2.4 % (SD 0.5 %, p 0.0001 for the null hypothesis of zero mean change between observations), the whole brain volume decreased 1.1 % (SD 0.5 %, p = 0.003), and the CSF volume increased 2.7 % (SD 1.8 %, p = 0.01) per year. In normal controls, only the mean white matter volume was significantly altered (0.8 % increase, SD 0.7 %, and p = 0.001). CONCLUSION: We demonstrated by longitudinal MRI that the annual rate of the gray matter loss in adolescent JNCL patients is as high as 2.4 %.