Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Physiol Renal Physiol ; 326(4): F622-F634, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420675

RESUMO

Calciprotein particles (CPPs) provide an efficient mineral buffering system to prevent the complexation of phosphate and calcium in the circulation. However, in chronic kidney disease (CKD), the phosphate load exceeds the mineral buffering capacity, resulting in the formation of crystalline CPP2 particles. CPP2 have been associated with cardiovascular events and mortality. Moreover, CPP2 have been demonstrated to induce calcification in vitro. In this study, we examined the fate of CPP2 in a rat model of CKD. Calcification was induced in Sprague-Dawley rats by 5/6 nephrectomy (5/6-Nx) combined with a high-phosphate diet. Control rats received sham surgery and high-phosphate diet. Twelve weeks after surgery, kidney failure was significantly induced in 5/6-Nx rats as determined by enhanced creatinine and urea plasma levels and abnormal kidney histological architecture. Subsequently, radioactive and fluorescent (FITC)-labeled CPP2 ([89Zr]Zr-CPP2-FITC) were injected intravenously to determine clearance in vivo. Using positron emission tomography scans and radioactive biodistribution measurements, it was demonstrated that [89Zr]Zr-CPP2-FITC are mainly present in the liver and spleen in both 5/6-Nx and sham rats. Immunohistochemistry showed that [89Zr]Zr-CPP2-FITC are predominantly taken up by Kupffer cells and macrophages. However, [89Zr]Zr-CPP2-FITC could also be detected in hepatocytes. In the different parts of the aorta and in the blood, low values of [89Zr]Zr-CPP2-FITC were detectable, independent of the presence of calcification. CPP2 are cleared rapidly from the circulation by the liver and spleen in a rat model of CKD. In the liver, Kupffer cells, macrophages, and hepatocytes contribute to CPP2 clearance.NEW & NOTEWORTHY Calciprotein particles (CPPs) buffer calcium and phosphate in the blood to prevent formation of crystals. In CKD, increased phosphate levels may exceed the buffering capacity of CPPs, resulting in crystalline CPPs that induce calcification. This study demonstrates that labeled CPPs are predominantly cleared from the circulation in the liver by Kupffer cells, macrophages, and hepatocytes. Our results suggest that targeting liver CPP clearance may reduce the burden of crystalline CPP in the development of vascular calcification.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Ratos , Animais , Baço/metabolismo , Cálcio/metabolismo , Fluoresceína-5-Isotiocianato , Distribuição Tecidual , Ratos Sprague-Dawley , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/etiologia , Minerais , Fígado/metabolismo , Fosfatos , Insuficiência Renal Crônica/patologia
2.
FASEB J ; 34(5): 6703-6717, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32202346

RESUMO

Iron homeostasis is essential for mitochondrial function, and iron deficiency has been associated with skeletal muscle weakness and decreased exercise capacity in patients with different chronic disorders. We hypothesized that iron deficiency-induced loss of skeletal muscle mitochondria is caused by increased mitochondrial clearance. To study this, C2C12 myotubes were subjected to the iron chelator deferiprone. Mitochondrial parameters and key constituents of mitophagy pathways were studied in presence or absence of pharmacological autophagy inhibition or knockdown of mitophagy-related proteins. Furthermore, it was explored if mitochondria were present in extracellular vesicles (EV). Iron chelation resulted in an increase in BCL2/Adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and BNIP3-like gene and protein levels, and the appearance of mitochondria encapsulated by lysosome-like vesicular structures in myotubes. Moreover, mitochondria were secreted via EV. These changes were associated with cellular mitochondrial impairments. These impairments were unaltered by autophagy inhibition, knockdown of mitophagy-related proteins BNIP3 and BNIP3L, or knockdown of their upstream regulator hypoxia-inducible factor 1 alpha. In conclusion, mitophagy is not essential for development of iron deficiency-induced reductions in mitochondrial proteins or respiratory capacity. The secretion of mitochondria-containing EV could present an additional pathway via which mitochondria can be cleared from iron chelation-exposed myotubes.


Assuntos
Deficiências de Ferro , Mitocôndrias Musculares/patologia , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Mitofagia , Músculo Esquelético/patologia , Vesículas Secretórias/metabolismo , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/genética , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio
3.
Muscle Nerve ; 64(6): 755-764, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34486134

RESUMO

INTRODUCTION/AIMS: Both neuromuscular junction (NMJ) dysfunction and altered electrophysiological properties of muscle fibers have been reported in amyotrophic lateral sclerosis (ALS) patients. ALS-related preclinical studies typically use rodent SOD1G93A overexpression models, but translation to the human disease has been challenged. The present work explored NMJ function and cellular electrophysiological properties of muscles fibers in SOD1G93A overexpression rats. METHODS: Longitudinal studies of compound muscle action potentials (CMAPs) were performed in SOD1G93A rats. Cellular studies were performed to evaluate electrophysiological properties of muscle fibers, including the resting membrane conductance (Gm ) and its regulation during prolonged action potential (AP) firing. RESULTS: SOD1G93A rats showed a substantial loss of gastrocnemius CMAP amplitude (35.8 mV, P < .001) and a minor increase in CMAP decrement (8.5%, P = .002) at 25 weeks. In addition, SOD1G93A EDL muscle fibers showed a lower baseline Gm (wild-type, 1325 µS/cm2 ; SOD1G93A , 1137 µS/cm2 ; P < .001) and minor alterations in Gm regulation during repeated firing of APs as compared with wild-type rats. DISCUSSION: The current data suggest that loss of CMAP amplitude is largely explained by defects in either lower motor neuron or skeletal muscle with only minor indications of a role for neuromuscular transmission defects in SOD1G93A rats. Electrophysiological properties of muscle fibers were not markedly affected, and an elevated Gm , as has been reported in motor neuron disease (MND) patients, was not replicated in SOD1G93A muscles. Collectively, the neuromuscular pathology of SOD1G93A rats appears to differ from that of ALS/MND patients with respect to neuromuscular transmission defects and electrophysiological properties of muscle fibers.


Assuntos
Esclerose Lateral Amiotrófica , Músculo Esquelético , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Neurônios Motores/fisiologia , Músculo Esquelético/fisiopatologia , Ratos , Superóxido Dismutase-1/genética
4.
BMC Pulm Med ; 20(1): 20, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964384

RESUMO

BACKGROUND: Both mitophagy, a selective mechanism for clearance of mitochondria, and mitochondrial biogenesis are key processes determining mitochondrial content and oxidative capacity of the musculature. Abnormalities in these processes could therefore contribute to deterioration of peripheral muscle oxidative capacity as observed in e.g. chronic obstructive pulmonary disease. Although it has been suggested that inflammatory mediators can modulate both mitophagy and mitochondrial biogenesis, it is unknown whether acute pulmonary inflammation affects these processes in oxidative and glycolytic skeletal muscle in vivo. Therefore, we hypothesised that molecular signalling patterns of mitochondrial breakdown and biogenesis temporally shift towards increased breakdown and decreased biogenesis in the skeletal muscle of mice exposed to one single bolus of IT-LPS, as a model for acute lung injury and pulmonary inflammation. METHODS: We investigated multiple important constituents and molecular regulators of mitochondrial breakdown, biogenesis, dynamics, and mitochondrial content in skeletal muscle over time in a murine (FVB/N background) model of acute pulmonary- and systemic inflammation induced by a single bolus of intra-tracheally (IT)-instilled lipopolysaccharide (LPS). Moreover, we compared the expression of these constituents between gastrocnemius and soleus muscle. RESULTS: Both in soleus and gastrocnemius muscle, IT-LPS instillation resulted in molecular patterns indicative of activation of mitophagy. This coincided with modulation of mRNA transcript abundance of genes involved in mitochondrial fusion and fission as well as an initial decrease and subsequent recovery of transcript levels of key proteins involved in the molecular regulation of mitochondrial biogenesis. Moreover, no solid differences in markers for mitochondrial content were found. CONCLUSIONS: These data suggest that one bolus of IT-LPS results in a temporal modulation of mitochondrial clearance and biogenesis in both oxidative and glycolytic skeletal muscle, which is insufficient to result in a reduction of mitochondrial content.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Inflamação/metabolismo , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial/genética , Mitofagia/fisiologia , Músculo Esquelético/metabolismo , Biogênese de Organelas , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/fisiopatologia , Animais , Inflamação/fisiopatologia , Lipopolissacarídeos/efeitos adversos , Camundongos , Músculo Esquelético/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Transdução de Sinais
5.
Muscle Nerve ; 60(6): 769-778, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31495926

RESUMO

INTRODUCTION: Physical inactivity significantly contributes to loss of muscle mass and performance in bed-bound patients. Loss of skeletal muscle mitochondrial content has been well-established in muscle unloading models, but the underlying molecular mechanism remains unclear. We hypothesized that apparent unloading-induced loss of muscle mitochondrial content is preceded by increased mitophagy- and decreased mitochondrial biogenesis-signaling during the early stages of unloading. METHODS: We analyzed a comprehensive set of molecular markers involved in mitochondrial-autophagy, -biogenesis, -dynamics, and -content, in the gastrocnemius muscle of C57BL/6J mice subjected to 0- and 3-days hind limb suspension, and in biopsies from human vastus lateralis muscle obtained before and after 7 days of one-leg immobilization. RESULTS: In both mice and men, short-term skeletal muscle unloading results in molecular marker patterns indicative of increased receptor-mediated mitophagy and decreased mitochondrial biogenesis regulation, before apparent loss of mitochondrial content. DISCUSSION: These results emphasize the early-onset of skeletal muscle disuse-induced mitochondrial remodeling.


Assuntos
Elevação dos Membros Posteriores , Mitocôndrias Musculares/metabolismo , Mitofagia/genética , Músculo Esquelético/metabolismo , Biogênese de Organelas , Adolescente , Adulto , Animais , Moldes Cirúrgicos , Expressão Gênica , Humanos , Imobilização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/patologia , Mitofagia/fisiologia , Músculo Esquelético/patologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Suporte de Carga , Adulto Jovem
6.
Curr Opin Clin Nutr Metab Care ; 19(6): 427-433, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27537277

RESUMO

PURPOSE OF REVIEW: Loss of skeletal muscle oxidative capacity is a common feature of chronic diseases such as chronic obstructive pulmonary disease, type 2 diabetes, and congestive heart failure. It may lead to physical impairments and has been suggested to contribute to metabolic inflexibility-induced cardiometabolic risk. The mechanism underlying loss of muscle oxidative capacity is incompletely understood. This review discusses the role of mitophagy as a driving force behind the loss of skeletal muscle oxidative capacity in these patients. RECENT FINDINGS: Mitophagy has been studied to a very limited extent in human skeletal muscle. There are, however, clear indications that disease-related factors, including hypoxia, systemic inflammation, muscle inactivity, and iron deficiency are able to induce mitophagy, and that these factors trigger mitophagy via different regulatory mechanisms. Although mitophagy may lead to mitochondrial loss, it is also required to maintain homeostasis through clearance of damaged mitochondria. SUMMARY: Based on available evidence, we propose that enhanced mitophagy is involved in chronic disease-induced loss of muscle oxidative capacity. Clearly more research is required to confirm this role and to establish to what extent mitophagy is pathological or a part of physiological adaptation to maintain muscle health.


Assuntos
Doença Crônica , Mitofagia/fisiologia , Músculo Esquelético/metabolismo , Animais , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Homeostase , Humanos , Hipóxia , Inflamação , Deficiências de Ferro , Mitocôndrias Musculares/fisiologia , Oxirredução , Doença Pulmonar Obstrutiva Crônica
7.
Sci Rep ; 14(1): 4821, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413800

RESUMO

Abnormal mitochondria have been observed in bronchial- and alveolar epithelial cells of patients with chronic obstructive pulmonary disease (COPD). However, it is unknown if alterations in the molecular pathways regulating mitochondrial turnover (mitochondrial biogenesis vs mitophagy) are involved. Therefore, in this study, the abundance of key molecules controlling mitochondrial turnover were assessed in peripheral lung tissue from non-COPD patients (n = 6) and COPD patients (n = 11; GOLDII n = 4/11; GOLDIV n = 7/11) and in both undifferentiated and differentiated human primary bronchial epithelial cells (PBEC) from non-COPD patients and COPD patients (n = 4-7 patients/group). We observed significantly decreased transcript levels of key molecules controlling mitochondrial biogenesis (PPARGC1B, PPRC1, PPARD) in peripheral lung tissue from severe COPD patients. Interestingly, mRNA levels of the transcription factor TFAM (mitochondrial biogenesis) and BNIP3L (mitophagy) were increased in these patients. In general, these alterations were not recapitulated in undifferentiated and differentiated PBECs with the exception of decreased PPARGC1B expression in both PBEC models. Although these findings provide valuable insight in these pathways in bronchial epithelial cells and peripheral lung tissue of COPD patients, whether or not these alterations contribute to COPD pathogenesis, underlie changes in mitochondrial function or may represent compensatory mechanisms remains to be established.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Renovação Mitocondrial , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
Sci Rep ; 12(1): 18551, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329098

RESUMO

Digestion of dietary fibers by gut bacteria has been shown to stimulate intestinal mineral absorption [e.g., calcium (Ca2+) and magnesium (Mg2+)]. Although it has been suggested that local pH and short-chain fatty acid (SCFA) concentrations determine divalent cation absorption, the exact molecular mechanisms are still unknown. Therefore, this study aimed to determine the effects of SCFAs on intestinal Mg2+ absorption. We show that the butyrate concentration in the colon negatively correlates with serum Mg2+ levels in wildtype mice. Moreover, Na-butyrate significantly inhibited Mg2+ uptake in Caco-2 cells, while Ca2+ uptake was unaffected. Although Na-butyrate significantly lowered total ATP production rate, and resulted in increased phosphorylation of AMP-activated protein kinase (AMPK), inhibition of Mg2+ uptake by butyrate preceded these consequences. Importantly, electrophysiological examinations demonstrated that intracellular butyrate directly reduced the activity of the heteromeric Mg2+ channel complex, transient receptor potential melastatin (TRPM)6/7. Blocking cellular butyrate uptake prevented its inhibitory effect on Mg2+ uptake, demonstrating that butyrate acts intracellularly. Our work identified butyrate as novel regulator of intestinal Mg2+ uptake that works independently from metabolic regulation. This finding further highlights the role of microbial fermentation in the regulation of mineral absorption.


Assuntos
Butiratos , Magnésio , Humanos , Camundongos , Animais , Butiratos/farmacologia , Butiratos/metabolismo , Células CACO-2 , Magnésio/metabolismo , Colo/metabolismo , Ácidos Graxos Voláteis/metabolismo
9.
Reprod Sci ; 28(8): 2186-2199, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33523425

RESUMO

Preeclampsia complicates 5-8% of all pregnancies worldwide, and although its pathophysiology remains obscure, placental oxidative stress and mitochondrial abnormalities are considered to play a key role. Mitochondrial abnormalities in preeclamptic placentae have been described, but the extent to which mitochondrial content and the molecular pathways controlling this (mitochondrial biogenesis and mitophagy) are affected in preeclamptic placentae is unknown. Therefore, in preeclamptic (n = 12) and control (n = 11) placentae, we comprehensively assessed multiple indices of placental antioxidant status, mitochondrial content, mitochondrial biogenesis, mitophagy, and mitochondrial fusion and fission. In addition, we also explored gene expression profiles related to inflammation and apoptosis. Preeclamptic placentae were characterized by higher levels of oxidized glutathione, a higher total antioxidant capacity, and higher mRNA levels of the mitochondrial-located antioxidant enzyme manganese-dependent superoxide dismutase 2 compared to controls. Furthermore, mitochondrial content was significantly lower in preeclamptic placentae, which was accompanied by an increased abundance of key constituents of glycolysis. Moreover, mRNA and protein levels of key molecules involved in the regulation of mitochondrial biogenesis were lower in preeclamptic placentae, while the abundance of constituents of the mitophagy, autophagy, and mitochondrial fission machinery was higher compared to controls. In addition, we found evidence for activation of apoptosis and inflammation in preeclamptic placentae. This study is the first to comprehensively demonstrate abnormalities at the level of the mitochondrion and the molecular pathways controlling mitochondrial content/function in preeclamptic placentae. These aberrations may well contribute to the pathophysiology of preeclampsia by upregulating placental inflammation, oxidative stress, and apoptosis. Graphical Abstract.


Assuntos
Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Adulto , Antioxidantes/metabolismo , Apoptose/fisiologia , Feminino , Humanos , Inflamação/metabolismo , Gravidez , Superóxido Dismutase/metabolismo , Trofoblastos/metabolismo
10.
PLoS One ; 16(1): e0245155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33434211

RESUMO

INTRODUCTION: Impaired utero-placental perfusion is a well-known feature of early preeclampsia and is associated with placental hypoxia and oxidative stress. Although aberrations at the level of the mitochondrion have been implicated in PE pathophysiology, whether or not hypoxia-induced mitochondrial abnormalities contribute to placental oxidative stress is unknown. METHODS: We explored whether abnormalities in mitochondrial metabolism contribute to hypoxia-induced placental oxidative stress by using both healthy term placentae as well as a trophoblast cell line (BeWo cells) exposed to hypoxia. Furthermore, we explored the therapeutic potential of the antioxidants MitoQ and quercetin in preventing hypoxia-induced placental oxidative stress. RESULTS: Both in placental explants as well as BeWo cells, hypoxia resulted in reductions in mitochondrial content, decreased abundance of key molecules involved in the electron transport chain and increased expression and activity of glycolytic enzymes. Furthermore, expression levels of key regulators of mitochondrial biogenesis were decreased while the abundance of constituents of the mitophagy, autophagy and mitochondrial fission machinery was increased in response to hypoxia. In addition, placental hypoxia was associated with increased oxidative stress, inflammation, and apoptosis. Moreover, experiments with MitoQ revealed that hypoxia-induced reactive oxygen species originated from the mitochondria in the trophoblasts. DISCUSSION: This study is the first to demonstrate that placental hypoxia is associated with mitochondrial-generated reactive oxygen species and significant alterations in the molecular pathways controlling mitochondrial content and function. Furthermore, our data indicate that targeting mitochondrial oxidative stress may have therapeutic benefit in the management of pathologies related to placental hypoxia.


Assuntos
Mitocôndrias/metabolismo , Biogênese de Organelas , Estresse Oxidativo , Pré-Eclâmpsia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trofoblastos/metabolismo , Hipóxia Celular , Linhagem Celular , Feminino , Humanos , Mitocôndrias/patologia , Pré-Eclâmpsia/patologia , Gravidez , Trofoblastos/patologia
11.
J Cachexia Sarcopenia Muscle ; 10(2): 311-322, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30657653

RESUMO

BACKGROUND: Pulmonary rehabilitation (PR) is a cornerstone in the management of chronic obstructive pulmonary disease (COPD), targeting skeletal muscle to improve functional performance. However, there is substantial inter-individual variability in the effect of PR on functional performance, which cannot be fully accounted for by generic phenotypic factors. We performed an unbiased integrative analysis of the skeletal muscle molecular responses to PR in COPD patients and comprehensively characterized their baseline pulmonary and physical function, body composition, blood profile, comorbidities, and medication use. METHODS: Musculus vastus lateralis biopsies were obtained from 51 COPD patients (age 64 ± 1 years, sex 73% men, FEV1 , 34 (26-41) %pred.) before and after 4 weeks high-intensity supervised in-patient PR. Muscle molecular markers were grouped by network-constrained clustering, and their relative changes in expression values-assessed by qPCR and western blot-were reduced to process scores by principal component analysis. Patients were subsequently clustered based on these process scores. Pre-PR and post-PR functional performance was assessed by incremental cycle ergometry and 6 min walking test (6MWT). RESULTS: Eight molecular processes were discerned by network-constrained hierarchical clustering of the skeletal muscle molecular rehabilitation responses. Based on the resulting process scores, four clusters of patients were identified by hierarchical cluster analysis. Two major patient clusters differed in PR-induced autophagy (P < 0.001), myogenesis (P = 0.014), glucocorticoid signalling (P < 0.001), and oxidative metabolism regulation (P < 0.001), with Cluster 1 (C1; n = 29) overall displaying a more pronounced change in marker expression than Cluster 2 (C2; n = 16). General baseline characteristics did not differ between clusters. Following PR, both 6 min walking distance (+26.5 ± 8.3 m, P = 0.003) and peak load on the cycle ergometer test (+9.7 ± 1.9 W, P < 0.001) were improved. However, the functional improvement was more pronounced in C1, as a higher percentage of patients exceeded the minimal clinically important difference in peak workload (61 vs. 21%, P = 0.022) and both peak workload and 6 min walking test (52 vs. 8%, P = 0.008) upon PR. CONCLUSIONS: We identified patient groups with distinct skeletal muscle molecular responses to rehabilitation, associated with differences in functional improvements upon PR.


Assuntos
Pulmão/metabolismo , Pulmão/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/reabilitação , Idoso , Composição Corporal , Análise por Conglomerados , Comorbidade , Gerenciamento Clínico , Terapia por Exercício , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Desempenho Físico Funcional , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Testes de Função Respiratória , Índice de Gravidade de Doença
12.
J Am Med Dir Assoc ; 18(7): 637.e1-637.e11, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28578881

RESUMO

BACKGROUND: Sarcopenia was recently recognized as an independent condition by an International Classification of Diseases, Tenth Revision, Clinical Modification code, and is a frequently observed comorbidity in chronic obstructive pulmonary disease (COPD). Muscle mass is primarily dictated by the balance between protein degradation and synthesis, but their relative contribution to sarcopenia is unclear. OBJECTIVE: We aimed to assess potential differential molecular regulation of protein degradation and synthesis, as well as myogenesis, in the skeletal muscle of COPD patients with and without sarcopenia. METHODS: Muscle biopsies were obtained from the vastus lateralis muscle. Patients with COPD were clustered based on sarcopenia defined by low appendicular skeletal muscle mass index (nonsarcopenic COPD, n = 53; sarcopenic COPD, n = 39), and compared with healthy nonsarcopenic controls (n = 13). The mRNA and protein expression of regulators and mediators of ubiquitin-proteasome system (UPS), autophagy-lysosome system (autophagy), and protein synthesis were analyzed. Furthermore, mRNA expression of myogenesis markers was assessed. RESULTS: UPS signaling was unaltered, whereas indices of UPS regulation (eg, FOXO1 protein; p-FOXO3/FOXO3), autophagy signaling (eg, LC3BII/I; p-ULK1[Ser757]/ULK1), and protein synthesis signaling (eg, AKT1; p-GSK3B/GSK3B; p-4E-BP1/4E-BP1) were increased in COPD. These alterations were even more pronounced in COPD patients with sarcopenia (eg, FOXO1 protein; p-FOXO1/FOXO1; LC3BII/I; p-ULK(Ser555); p-AKT1/AKT1; AKT1; p-4E-BP1). Furthermore, myogenic signaling (eg, MYOG) was increased in COPD despite a concomitant increase of myostatin (MSTN) mRNA expression, with no difference between sarcopenic and nonsarcopenic COPD patients. CONCLUSION: Together with elevated myogenic signaling, the increase in muscle protein turnover signaling in COPD, which is even more prominent in COPD patients with sarcopenia, reflects molecular alterations associated with muscle repair and remodeling.


Assuntos
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Sarcopenia/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia , Sarcopenia/complicações , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA