RESUMO
Thousands of endoparasitoid wasp species in the families Braconidae and Ichneumonidae harbor "domesticated endogenous viruses" (DEVs) in their genomes. This study focuses on ichneumonid DEVs, named ichnoviruses (IVs). Large quantities of DNA-containing IV virions are produced in ovary calyx cells during the pupal and adult stages of female wasps. Females parasitize host insects by injecting eggs and virions into the body cavity. After injection, virions rapidly infect host cells which is followed by expression of IV genes that promote the successful development of wasp offspring. IV genomes consist of two components: proviral segment loci that serve as templates for circular dsDNAs that are packaged into capsids, and genes from an ancestral virus that produce virions. In this study, we generated a chromosome-scale genome assembly for Hyposoter didymator that harbors H. didymator ichnovirus (HdIV). We identified a total of 67 HdIV loci that are amplified in calyx cells during the wasp pupal stage. We then focused on an HdIV gene, U16, which is transcribed in calyx cells during the initial stages of replication. Sequence analysis indicated that U16 contains a conserved domain in primases from select other viruses. Knockdown of U16 by RNA interference inhibited virion morphogenesis in calyx cells. Genome-wide analysis indicated U16 knockdown also inhibited amplification of HdIV loci in calyx cells. Altogether, our results identified several previously unknown HdIV loci, demonstrated that all HdIV loci are amplified in calyx cells during the pupal stage, and showed that U16 is required for amplification and virion morphogenesis.
Assuntos
Replicação Viral , Vespas , Animais , Vespas/virologia , Vespas/genética , Replicação Viral/genética , Genoma Viral , Feminino , Genes Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Polydnaviridae/genética , Vírion/genéticaRESUMO
Grapevine downy mildew, caused by the oomycete Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni), is a global threat to Eurasian wine grapes Vitis vinifera. Although resistant grapevine varieties are becoming more accessible, P. viticola populations are rapidly evolving to overcome these resistances. We aimed to uncover avirulence genes related to Rpv3.1-mediated grapevine resistance. We sequenced the genomes and characterized the development of 136 P. viticola strains on resistant and sensitive grapevine cultivars. A genome-wide association study was conducted to identify genomic variations associated with resistant-breaking phenotypes. We identified a genomic region associated with the breakdown of Rpv3.1 grapevine resistance (avrRpv3.1 locus). A diploid-aware reassembly of the P. viticola INRA-Pv221 genome revealed structural variations in this locus, including a 30 kbp deletion. Virulent P. viticola strains displayed multiple deletions on both haplotypes at the avrRpv3.1 locus. These deletions involve two paralog genes coding for proteins with 800-900 amino acids and signal peptides. These proteins exhibited a structure featuring LWY-fold structural modules, common among oomycete effectors. When transiently expressed, these proteins induced cell death in grapevines carrying Rpv3.1 resistance, confirming their avirulence nature. This discovery sheds light on the genetic mechanisms enabling P. viticola to adapt to grapevine resistance, laying a foundation for developing strategies to manage this destructive crop pathogen.
Assuntos
Resistência à Doença , Doenças das Plantas , Vitis , Vitis/genética , Vitis/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Oomicetos/patogenicidade , Estudo de Associação Genômica Ampla , Deleção de Sequência , Genes de Plantas , Haplótipos/genética , Deleção de Genes , FenótipoRESUMO
In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the 'Express' genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre-occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS-treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co-expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis-element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co-expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.
Assuntos
Brassica napus , Secas , Regulação da Expressão Gênica de Plantas , Sementes , Estresse Fisiológico , Brassica napus/genética , Brassica napus/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodioforídeos/fisiologia , Transcriptoma/genéticaRESUMO
BACKGROUND: Local assembly with short and long reads has proven to be very useful in many applications: reconstruction of the sequence of a locus of interest, gap-filling in draft assemblies, as well as alternative allele reconstruction of large Structural Variants. Whereas linked-read technologies have a great potential to assemble specific loci as they provide long-range information while maintaining the power and accuracy of short-read sequencing, there is a lack of local assembly tools for linked-read data. RESULTS: We present MTG-Link, a novel local assembly tool dedicated to linked-reads. The originality of the method lies in its read subsampling step which takes advantage of the barcode information contained in linked-reads mapped in flanking regions. We validated our approach on several datasets from different linked-read technologies. We show that MTG-Link is able to assemble successfully large sequences, up to dozens of Kb. We also demonstrate that the read subsampling step of MTG-Link considerably improves the local assembly of specific loci compared to other existing short-read local assembly tools. Furthermore, MTG-Link was able to fully characterize large insertion variants and deletion breakpoints in a human genome and to reconstruct dark regions in clinically-relevant human genes. It also improved the contiguity of a 1.3 Mb locus of biological interest in several individual genomes of the mimetic butterfly Heliconius numata. CONCLUSIONS: MTG-Link is an efficient local assembly tool designed for different linked-read sequencing technologies. MTG-Link source code is available at https://github.com/anne-gcd/MTG-Link and as a Bioconda package.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma HumanoRESUMO
The role of lncRNAs in immune defence has been demonstrated in many multicellular and unicellular organisms. However, investigation of the identification and characterization of long non-coding RNAs (lncRNAs) involved in the insect immune response is still limited. In this study, we used RNA sequencing (RNA-seq) to investigate the expression profiles of lncRNAs and mRNAs in the fall armyworm Spodoptera frugiperda in response to virus infection. To assess the tissue- and virus-specificity of lncRNAs, we analysed and compared their expression profiles in haemocytes and fat body of larvae infected with two entomopathogenic viruses with different lifestyles, i.e. the polydnavirus HdIV (Hyposoter didymator IchnoVirus) and the densovirus JcDV (Junonia coenia densovirus). We identified 1883 candidate lncRNAs, of which 529 showed differential expression following viral infection. Expression profiles differed considerably between samples, indicating that many differentially expressed (DE) lncRNAs showed virus- and tissue-specific expression patterns. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and target prediction analyses indicated that DE-LncRNAs were mainly enriched in metabolic process, DNA replication and repair, immune response, metabolism of insect hormone and cell adhesion. In addition, we identified three DE-lncRNAs potentially acting as microRNA host genes, suggesting that they participate in gene regulation by producing miRNAs in response to virus infection. This study provides a catalogue of lncRNAs expressed in two important immune tissues and potential insight into their roles in the antiviral defence in S. frugiperda. The results may help future in-depth functional studies to better understand the biological function of lncRNAs in interaction between viruses and the fall armyworm.
Assuntos
Polydnaviridae , RNA Longo não Codificante , Viroses , Animais , Spodoptera/genética , Perfilação da Expressão Gênica/métodos , RNA Longo não Codificante/genética , Polydnaviridae/genéticaRESUMO
Ecology of insects is as wide as their diversity, which reflects their high capacity of adaptation in most of the environments of our planet. Aphids, with over 4,000 species, have developed a series of adaptations including a high phenotypic plasticity and the ability to feed on the phloem sap of plants, which is enriched in sugars derived from photosynthesis. Recent analyses of aphid genomes have indicated a high level of shared ancestral gene duplications that might represent a basis for genetic innovation and broad adaptations. In addition, there are a large number of recent, species-specific gene duplications whose role in adaptation remains poorly understood. Here, we tested whether duplicates specific to the pea aphid Acyrthosiphon pisum are related to genomic innovation by combining comparative genomics, transcriptomics, and chromatin accessibility analyses. Consistent with large levels of neofunctionalization, we found that most of the recent pairs of gene duplicates evolved asymmetrically, showing divergent patterns of positive selection and gene expression. Genes under selection involved a plethora of biological functions, suggesting that neofunctionalization and tissue specificity, among other evolutionary mechanisms, have orchestrated the evolution of recent paralogs in the pea aphid and may have facilitated host-symbiont cooperation. Our comprehensive phylogenomics analysis allowed us to tackle the history of duplicated genes to pave the road toward understanding the role of gene duplication in ecological adaptation.
Assuntos
Afídeos/genética , Evolução Biológica , Duplicação Gênica , Genoma de Inseto , Seleção Genética , Animais , Empacotamento do DNA , Expressão GênicaRESUMO
There are many documented examples of viral genes retained in the genomes of multicellular organisms that may in some cases bring new beneficial functions to the receivers. The ability of certain ichneumonid parasitic wasps to produce virus-derived particles, the so-called ichnoviruses (IVs), not only results from the capture and domestication of single viral genes but of almost entire ancestral virus genome(s). Indeed, following integration into wasp chromosomal DNA, the putative and still undetermined IV ancestor(s) evolved into encoding a 'virulence gene delivery vehicle' that is now required for successful infestation of wasp hosts. Several putative viral genes, which are clustered in distinct regions of wasp genomes referred to as IVSPERs (Ichnovirus Structural Protein Encoding Regions), have been assumed to be involved in virus-derived particles morphogenesis, but this question has not been previously functionally addressed. In the present study, we have successfully combined RNA interference and transmission electron microscopy to specifically identify IVSPER genes that are responsible for the morphogenesis and trafficking of the virus-derived particles in ovarian cells of the ichneumonid wasp Hyposoter didymator. We suggest that ancestral viral genes retained within the genomes of certain ichneumonid parasitoids possess conserved functions which were domesticated for the purpose of assembling viral vectors for the delivery of virulence genes to parasitized host animals.
Assuntos
Vírion/fisiologia , Vespas/genética , Vespas/virologia , Animais , Genes Virais/genética , Polydnaviridae/genética , Interferência de RNARESUMO
There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant-insect interactions are restricted to a few cases belonging to parasitoid-associated bracoviruses. Insect parasitoids harbour a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behaviour. Yet, the function of these symbionts in plant-based trophic webs remains largely overlooked. Here, we provide the first evidence of a parasitoid-associated symbiont belonging to the group of ichnoviruses which affects the strength of plant-insect interactions. A comparative proteomic analysis shows that, upon parasitoid injection of calyx fluid containing ichnovirus particles, the composition of salivary glands of caterpillars changes both qualitatively (presence of two viral-encoded proteins) and quantitatively (abundance of several caterpillar-resident enzymes, including elicitors such as glucose oxidase). In turn, plant phenotypic changes triggered by the altered composition of caterpillar oral secretions affect the performance of herbivores. Ichnovirus manipulation of plant responses to herbivory leads to benefits for their parasitoid partners in terms of reduced developmental time within the parasitized caterpillar. Interestingly, plant-mediated ichnovirus-induced effects also enhance the performances of unparasitized herbivores which in natural conditions may feed alongside parasitized ones. We discuss these findings in the context of ecological costs imposed to the plant by the viral symbiont of the parasitoid. Our results provide intriguing novel findings about the role played by carnivore-associated symbionts on plant-insect-parasitoid systems and underline the importance of placing mutualistic associations in an ecological perspective.
Assuntos
Polydnaviridae , Vespas , Animais , Herbivoria , Interações Hospedeiro-Parasita , Larva , ProteômicaRESUMO
Ecological speciation entails divergent selection on specific traits and ultimately on the developmental pathways responsible for these traits. Selection can act on gene sequences but also on regulatory regions responsible for gene expression. Mimetic butterflies are a relevant system for speciation studies because wing colour pattern (WCP) often diverges between closely related taxa and is thought to drive speciation through assortative mating and increased predation on hybrids. Here, we generate the first transcriptomic resources for a mimetic butterfly of the tribe Ithomiini, Melinaea marsaeus, to examine patterns of differential expression between two subspecies and between tissues that express traits that likely drive reproductive isolation; WCP and chemosensory genes. We sequenced whole transcriptomes of three life stages to cover a large catalogue of transcripts, and we investigated differential expression between subspecies in pupal wing discs and antennae. Eighteen known WCP genes were expressed in wing discs and 115 chemosensory genes were expressed in antennae, with a remarkable diversity of chemosensory protein genes. Many transcripts were differentially expressed between subspecies, including two WCP genes and one odorant receptor. Our results suggest that in M. marsaeus the same genes as in other mimetic butterflies are involved in traits causing reproductive isolation, and point at possible candidates for the differences in those traits between subspecies. Differential expression analyses of other developmental stages and body organs and functional studies are needed to confirm and expand these results. Our work provides key resources for comparative genomics in mimetic butterflies, and more generally in Lepidoptera.
Assuntos
Borboletas , Animais , Borboletas/genética , Perfilação da Expressão Gênica , Isolamento Reprodutivo , Transcriptoma , Asas de AnimaisRESUMO
Female gamete production relies on coordinated molecular and cellular processes that occur in the ovary throughout oogenesis. In fish, as in other vertebrates, these processes have been extensively studied both in terms of endocrine/paracrine regulation and protein expression and activity. The role of small non-coding RNAs in the regulation of animal reproduction remains however largely unknown and poorly investigated, despite a growing interest for the importance of miRNAs in a wide variety of biological processes. Here, we analyzed the role of miR-202, a miRNA predominantly expressed in male and female gonads in several vertebrate species. We studied its expression in the medaka ovary and generated a mutant line (using CRISPR/Cas9 genome editing) to determine its importance for reproductive success with special interest for egg production. Our results show that miR-202-5p is the most abundant mature form of the miRNA and that it is expressed in granulosa cells and in the unfertilized egg. The knock out (KO) of mir-202 gene resulted in a strong phenotype both in terms of number and quality of eggs produced. Mutant females exhibited either no egg production or produced a dramatically reduced number of eggs that could not be fertilized, ultimately leading to no reproductive success. We quantified the size distribution of the oocytes in the ovary of KO females and performed a large-scale transcriptomic analysis approach to identified dysregulated molecular pathways. Together, cellular and molecular analyses indicate that the lack of miR-202 impairs the early steps of oogenesis/folliculogenesis and decreases the number of large (i.e. vitellogenic) follicles, ultimately leading to dramatically reduced female fecundity. This study sheds new light on the regulatory mechanisms that control the early steps of follicular development, including possible targets of miR-202-5p, and provides the first in vivo functional evidence that a gonad-predominant microRNA may have a major role in female reproduction.
Assuntos
Fertilidade/genética , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/fisiologia , Oogênese/genética , Oryzias/fisiologia , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Feminino , Edição de Genes , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Células da Granulosa , Masculino , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Ovário/citologia , Ovário/crescimento & desenvolvimento , Ovário/metabolismoRESUMO
BACKGROUND: Polydnaviruses (PDVs) are mutualistic endogenous viruses inoculated by some lineages of parasitoid wasps into their hosts, where they facilitate successful wasp development. PDVs include the ichnoviruses and bracoviruses that originate from independent viral acquisitions in ichneumonid and braconid wasps respectively. PDV genomes are fully incorporated into the wasp genomes and consist of (1) genes involved in viral particle production, which derive from the viral ancestor and are not encapsidated, and (2) proviral segments harboring virulence genes, which are packaged into the viral particle. To help elucidating the mechanisms that have facilitated viral domestication in ichneumonid wasps, we analyzed the structure of the viral insertions by sequencing the whole genome of two ichnovirus-carrying wasp species, Hyposoter didymator and Campoletis sonorensis. RESULTS: Assemblies with long scaffold sizes allowed us to unravel the organization of the endogenous ichnovirus and revealed considerable dispersion of the viral loci within the wasp genomes. Proviral segments contained species-specific sets of genes and occupied distinct genomic locations in the two ichneumonid wasps. In contrast, viral machinery genes were organized in clusters showing highly conserved gene content and order, with some loci located in collinear wasp genomic regions. This genomic architecture clearly differs from the organization of PDVs in braconid wasps, in which proviral segments are clustered and viral machinery elements are more dispersed. CONCLUSIONS: The contrasting structures of the two types of ichnovirus genomic elements are consistent with their different functions: proviral segments are vehicles for virulence proteins expected to adapt according to different host defense systems, whereas the genes involved in virus particle production in the wasp are likely more stable and may reflect ancestral viral architecture. The distinct genomic architectures seen in ichnoviruses versus bracoviruses reveal different evolutionary trajectories that have led to virus domestication in the two wasp lineages.
Assuntos
Evolução Molecular , Genoma Viral , Interações entre Hospedeiro e Microrganismos , Polydnaviridae/genética , Vespas/virologia , Animais , Especificidade da Espécie , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. RESULTS: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. CONCLUSIONS: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.
Assuntos
Adaptação Biológica , Evolução Biológica , Genoma de Inseto/fisiologia , Hemípteros/genética , Adaptação Biológica/genética , Distribuição Animal , Animais , Espécies Introduzidas , VitisRESUMO
An amendment to this paper has been published and can be accessed via the original article.
RESUMO
Several plastid macromolecular protein complexes are encoded by both nuclear and plastid genes. Therefore, cytonuclear interactions are held in place to prevent genomic conflicts that may lead to incompatibilities. Allopolyploidy resulting from hybridization and genome doubling of two divergent species can disrupt these fine-tuned interactions, as newly formed allopolyploid species confront biparental nuclear chromosomes with a uniparentally inherited plastid genome. To avoid any deleterious effects of unequal genome inheritance, preferential transcription of the plastid donor over the other donor has been hypothesized to occur in allopolyploids. We used Brassica as a model to study the effects of paleopolyploidy in diploid parental species, as well as the effects of recent and ancient allopolyploidy in Brassica napus, on genes implicated in plastid protein complexes. We first identified redundant nuclear copies involved in those complexes. Compared with cytosolic protein complexes and with genome-wide retention rates, genes involved in plastid protein complexes show a higher retention of genes in duplicated and triplicated copies. Those redundant copies are functional and are undergoing strong purifying selection. We then compared transcription patterns and sequences of those redundant gene copies between resynthesized allopolyploids and their diploid parents. The neopolyploids showed no biased subgenome expression or maternal homogenization via gene conversion, despite the presence of some non-synonymous substitutions between plastid genomes of parental progenitors. Instead, subgenome dominance was observed regardless of the maternal progenitor. Our results provide new insights on the evolution of plastid protein complexes that could be tested and generalized in other allopolyploid species.
Assuntos
Brassica/genética , Cloroplastos/genética , Duplicação Gênica/genética , Genomas de Plastídeos/genética , Brassica napus/genética , Evolução Molecular , PoliploidiaRESUMO
BACKGROUND: Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS: We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS: These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.
Assuntos
Afídeos/genética , Genômica , Vespas/genética , Animais , Afídeos/imunologia , Metilação de DNA/genética , Sequência Rica em GC , Proteínas de Insetos/genética , Processos de Determinação Sexual/genética , Peçonhas/genética , Vespas/imunologiaRESUMO
Hybrid zones, whereby divergent lineages come into contact and eventually hybridize, can provide insights on the mechanisms involved in population differentiation and reproductive isolation, and ultimately speciation. Suture zones offer the opportunity to compare these processes across multiple species. In this paper we use reduced-complexity genomic data to compare the genetic and phenotypic structure and hybridization patterns of two mimetic butterfly species, Ithomia salapia and Oleria onega (Nymphalidae: Ithomiini), each consisting of a pair of lineages differentiated for their wing colour pattern and that come into contact in the Andean foothills of Peru. Despite similarities in their life history, we highlight major differences, both at the genomic and phenotypic level, between the two species. These differences include the presence of hybrids, variations in wing phenotype, and genomic patterns of introgression and differentiation. In I. salapia, the two lineages appear to hybridize only rarely, whereas in O. onega the hybrids are not only more common, but also genetically and phenotypically more variable. We also detected loci statistically associated with wing colour pattern variation, but in both species these loci were not over-represented among the candidate barrier loci, suggesting that traits other than wing colour pattern may be important for reproductive isolation. Our results contrast with the genomic patterns observed between hybridizing lineages in the mimetic Heliconius butterflies, and call for a broader investigation into the genomics of speciation in Ithomiini - the largest radiation of mimetic butterflies.
Assuntos
Borboletas/genética , Genética Populacional , Hibridização Genética , Animais , Borboletas/classificação , Especiação Genética , Genoma de Inseto , Genótipo , Peru , Fenótipo , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Asas de Animais/anatomia & histologiaRESUMO
Whole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. One of the main bottlenecks, however, is to correctly identify the different classes of RNAs among the plethora of reconstructed transcripts, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program that accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-the-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE data sets. The program also provides specific modules that enable the user to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to identify lncRNAs even in the absence of a training set of non-coding RNAs. We used FEELnc on a real data set comprising 20 canine RNA-seq samples produced by the European LUPA consortium to substantially expand the canine genome annotation to include 10 374 novel lncRNAs and 58 640 mRNA transcripts. FEELnc moves beyond conventional coding potential classifiers by providing a standardized and complete solution for annotating lncRNAs and is freely available at https://github.com/tderrien/FEELnc.
Assuntos
Genoma , Anotação de Sequência Molecular/métodos , RNA Longo não Codificante/genética , Software , Transcriptoma , Animais , Benchmarking , Árvores de Decisões , Cães , Regulação da Expressão Gênica , Humanos , Camundongos , Anotação de Sequência Molecular/estatística & dados numéricos , Fases de Leitura Aberta , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , RNA Mensageiro/classificação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNARESUMO
BACKGROUND: A change in the environment may impair development or survival of living organisms leading them to adapt to the change. The resulting adaptation trait may reverse, or become fixed in the population leading to evolution of species. Deciphering the molecular basis of adaptive traits can thus give evolutionary clues. In phytophagous insects, a change in host-plant range can lead to emergence of new species. Among them, Spodoptera frugiperda is a major agricultural lepidopteran pest consisting of two host-plant strains having diverged 3 MA, based on mitochondrial markers. In this paper, we address the role of microRNAs, important gene expression regulators, in response to host-plant change and in adaptive evolution. RESULTS: Using small RNA sequencing, we characterized miRNA repertoires of the corn (C) and rice (R) strains of S. frugiperda, expressed during larval development on two different host-plants, corn and rice, in the frame of reciprocal transplant experiments. We provide evidence for 76 and 68 known miRNAs in C and R strains and 139 and 171 novel miRNAs. Based on read counts analysis, 34 of the microRNAs were differentially expressed in the C strain larvae fed on rice as compared to the C strain larvae fed on corn. Twenty one were differentially expressed on rice compared to corn in R strain. Nine were differentially expressed in the R strain compared to C strain when reared on corn. A similar ratio of microRNAs was differentially expressed between strains on rice. We could validate experimentally by QPCR, variation in expression of the most differentially expressed candidates. We used bioinformatics methods to determine the target mRNAs of known microRNAs. Comparison with the mRNA expression profile during similar reciprocal transplant experiment revealed potential mRNA targets of these host-plant regulated miRNAs. CONCLUSIONS: In the current study, we performed the first systematic analysis of miRNAs in Lepidopteran pests feeding on host-plants. We identified a set of the differentially expressed miRNAs that respond to the plant diet, or differ constitutively between the two host plant strains. Among the latter, the ones that are also deregulated in response to host-plant are molecular candidates underlying a complex adaptive trait.
Assuntos
Perfilação da Expressão Gênica , Proteínas de Insetos/genética , MicroRNAs/genética , Oryza/parasitologia , Spodoptera/genética , Zea mays/parasitologia , Animais , Biologia Computacional , Comportamento Alimentar , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , Larva , Spodoptera/classificaçãoRESUMO
Identifying the genomic bases of adaptation to novel environments is a long-term objective in evolutionary biology. Because genetic differentiation is expected to increase between locally adapted populations at the genes targeted by selection, scanning the genome for elevated levels of differentiation is a first step towards deciphering the genomic architecture underlying adaptive divergence. The pea aphid Acyrthosiphon pisum is a model of choice to address this question, as it forms a large complex of plant-specialized races and cryptic species, resulting from recent adaptive radiation. Here, we characterized genomewide polymorphisms in three pea aphid races specialized on alfalfa, clover and pea crops, respectively, which we sequenced in pools (poolseq). Using a model-based approach that explicitly accounts for selection, we identified 392 genomic hotspots of differentiation spanning 47.3 Mb and 2,484 genes (respectively, 9.12% of the genome size and 8.10% of its genes). Most of these highly differentiated regions were located on the autosomes, and overall differentiation was weaker on the X chromosome. Within these hotspots, high levels of absolute divergence between races suggest that these regions experienced less gene flow than the rest of the genome, most likely by contributing to reproductive isolation. Moreover, population-specific analyses showed evidence of selection in every host race, depending on the hotspot considered. These hotspots were significantly enriched for candidate gene categories that control host-plant selection and use. These genes encode 48 salivary proteins, 14 gustatory receptors, 10 odorant receptors, five P450 cytochromes and one chemosensory protein, which represent promising candidates for the genetic basis of host-plant specialization and ecological isolation in the pea aphid complex. Altogether, our findings open new research directions towards functional studies, for validating the role of these genes on adaptive phenotypes.
RESUMO
BACKGROUND: Improving functional annotation of the chicken genome is a key challenge in bridging the gap between genotype and phenotype. Among all transcribed regions, long noncoding RNAs (lncRNAs) are a major component of the transcriptome and its regulation, and whole-transcriptome sequencing (RNA-Seq) has greatly improved their identification and characterization. We performed an extensive profiling of the lncRNA transcriptome in the chicken liver and adipose tissue by RNA-Seq. We focused on these two tissues because of their importance in various economical traits for which energy storage and mobilization play key roles and also because of their high cell homogeneity. To predict lncRNAs, we used a recently developed tool called FEELnc, which also classifies them with respect to their distance and strand orientation to the closest protein-coding genes. Moreover, to confidently identify the genes/transcripts expressed in each tissue (a complex task for weakly expressed molecules such as lncRNAs), we probed a particularly large number of biological replicates (16 per tissue) compared to common multi-tissue studies with a larger set of tissues but less sampling. RESULTS: We predicted 2193 lncRNA genes, among which 1670 were robustly expressed across replicates in the liver and/or adipose tissue and which were classified into 1493 intergenic and 177 intragenic lncRNAs located between and within protein-coding genes, respectively. We observed similar structural features between chickens and mammals, with strong synteny conservation but without sequence conservation. As previously reported, we confirm that lncRNAs have a lower and more tissue-specific expression than mRNAs. Finally, we showed that adjacent lncRNA-mRNA genes in divergent orientation have a higher co-expression level when separated by less than 1 kb compared to more distant divergent pairs. Among these, we highlighted for the first time a novel lncRNA candidate involved in lipid metabolism, lnc_DHCR24, which is highly correlated with the DHCR24 gene that encodes a key enzyme of cholesterol biosynthesis. CONCLUSIONS: We provide a comprehensive lncRNA repertoire in the chicken liver and adipose tissue, which shows interesting patterns of co-expression between mRNAs and lncRNAs. It contributes to improving the structural and functional annotation of the chicken genome and provides a basis for further studies on energy storage and mobilization traits in the chicken.