Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 39(5): 677-88, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20832720

RESUMO

Cohesion between sister chromatids is mediated by the chromosomal cohesin complex. In budding yeast, cohesin is loaded onto chromosomes during the G1 phase of the cell cycle. During S phase, the replication fork-associated acetyltransferase Eco1 acetylates the cohesin subunit Smc3 to promote the establishment of sister chromatid cohesion. At the time of anaphase, Smc3 loses its acetylation again, but the Smc3 deacetylase and the possible importance of Smc3 deacetylation are unknown. Here, we show that the class I histone deacetylase family member Hos1 is responsible for Smc3 deacetylation. Cohesin is protected from deacetylation while bound to chromosomes but is deacetylated as soon as it dissociates from chromosomes at anaphase onset. Nonacetylated Smc3 is required as a substrate for cohesion establishment in the following cell cycle. Our results complete the description of an Smc3 acetylation cycle and provide unexpected insight into the importance of de novo Smc3 acetylation for cohesion establishment.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Anáfase/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Fase G1/fisiologia , Histona Desacetilases/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fase S/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
2.
Curr Biol ; 13(22): 1930-40, 2003 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-14614818

RESUMO

BACKGROUND: Cohesion between sister chromatids is promoted by the chromosomal cohesin complex that forms a proteinaceous ring, large enough in principle to embrace two sister strands. The mechanism by which cohesin binds to DNA, and how sister chromatid cohesion is established, is unknown. RESULTS: Biochemical studies of cohesin have largely been limited to protein isolated from soluble cellular fractions. Here, we characterize cohesin purified from budding yeast chromatin, suggesting that chromosomal cohesin is sufficiently described by its known distinctive ring structure. We present evidence that the two Smc subunits of cohesin by themselves form a ring, closed at interacting ATPase head domains. A motif in the Smc1 subunit implicated in ATP hydrolysis is essential for loading cohesin onto DNA. In addition to functional ATPase heads, an intact cohesin ring structure is indispensable for DNA binding, suggesting that ATP hydrolysis may be coupled to DNA transport into the cohesin ring. DNA is released in anaphase when separase cleaves cohesin's Scc1 subunit. We show that a cleavage fragment of Scc1 disrupts the interaction between the two Smc heads, thereby opening the ring. CONCLUSIONS: We present a model for cohesin binding to chromatin by ATP hydrolysis-dependent transport of DNA into the cohesin ring. After DNA replication, two DNA strands may be trapped to promote sister chromatid cohesion. In anaphase, Scc1 cleavage opens the ring to release sister chromatids.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Modelos Químicos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Cromatografia em Gel , Proteínas Cromossômicas não Histona , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas , Hidrólise , Proteínas Nucleares/isolamento & purificação , Fosfoproteínas , Proteínas de Saccharomyces cerevisiae , Saccharomycetales/genética , Saccharomycetales/metabolismo , Coloração pela Prata , Coesinas
3.
J Med Imaging Radiat Oncol ; 60(4): 539-44, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26936092

RESUMO

BACKGROUND: Local control for extremity soft tissue sarcomas (STS) requires surgery combined with radiotherapy, usually given pre-operatively or post-operatively. The modified Eilber protocol, a neoadjuvant chemoradiation regimen, has been reported with excellent local control rates. This retrospective single-centre study compared outcomes for patients treated with the modified Eilber protocol with those treated with standard adjuvant radiotherapy. METHODS: Patients with a diagnosis of extremity STS were retrospectively reviewed from the Prince of Wales Hospital Sarcoma Database from 1995 to 2012. Sixty-three patients underwent curative surgery with either neoadjuvant Eilber chemoradiotherapy (Eilber) or adjuvant radiotherapy (Adjuvant). RESULTS: Twenty-nine patients were treated with modified Eilber protocol. Thirty-four patients received adjuvant radiotherapy. Three patients (10%) in the Eilber group and five patients (15%) in the Adjuvant group developed local recurrence (P = 0.87). Major acute wound complications were noted in four patients in each group (P = 0.55). One patient (3.4%) in the Eilber group developed Grade 3 or 4 late toxicities after 1 year compared with nine patients (27%) in the Adjuvant group (P = 0.02). CONCLUSION: Neoadjuvant chemoradiation (Eilber protocol) provided similar rates of local control when compared with adjuvant radiotherapy. Acute wound complication rates were similar but there was less severe late toxicity in the Eilber group.


Assuntos
Quimiorradioterapia/métodos , Terapia Neoadjuvante/métodos , Sarcoma/terapia , Neoplasias de Tecidos Moles/terapia , Extremidades , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Radioterapia Adjuvante , Estudos Retrospectivos , Sarcoma/radioterapia , Neoplasias de Tecidos Moles/radioterapia
4.
Science ; 321(5888): 563-6, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18653893

RESUMO

Replicated chromosomes are held together by the chromosomal cohesin complex from the time of their synthesis in S phase onward. This requires the replication fork-associated acetyl transferase Eco1, but Eco1's mechanism of action is not known. We identified spontaneous suppressors of the thermosensitive eco1-1 allele in budding yeast. An acetylation-mimicking mutation of a conserved lysine in cohesin's Smc3 subunit makes Eco1 dispensable for cell growth, and we show that Smc3 is acetylated in an Eco1-dependent manner during DNA replication to promote sister chromatid cohesion. A second set of eco1-1 suppressors inactivate the budding yeast ortholog of the cohesin destabilizer Wapl. Our results indicate that Eco1 modifies cohesin to stabilize sister chromatid cohesion in parallel with a cohesion establishment reaction that is in principle Eco1-independent.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cromátides/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Alelos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Reparo do DNA , Replicação do DNA , DNA Fúngico/metabolismo , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Supressão Genética
5.
Cell ; 125(4): 719-32, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16713564

RESUMO

After anaphase, the high mitotic cyclin-dependent kinase (Cdk) activity is downregulated to promote exit from mitosis. To this end, in the budding yeast S. cerevisiae, the Cdk counteracting phosphatase Cdc14 is activated. In metaphase, Cdc14 is kept inactive in the nucleolus by its inhibitor Net1. During anaphase, Cdk- and Polo-dependent phosphorylation of Net1 is thought to release active Cdc14. How Net1 is phosphorylated specifically in anaphase, when mitotic kinase activity starts to decline, has remained unexplained. Here, we show that PP2A(Cdc55) phosphatase keeps Net1 underphosphorylated in metaphase. The sister chromatid-separating protease separase, activated at anaphase onset, interacts with and downregulates PP2A(Cdc55), thereby facilitating Cdk-dependent Net1 phosphorylation. PP2A(Cdc55) downregulation also promotes phosphorylation of Bfa1, contributing to activation of the "mitotic exit network" that sustains Cdc14 as Cdk activity declines. These findings allow us to present a new quantitative model for mitotic exit in budding yeast.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Endopeptidases/metabolismo , Mitose/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/genética , Nucléolo Celular/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Regulação para Baixo , Endopeptidases/genética , Ativação Enzimática , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Separase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA