Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7847): 580-586, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627813

RESUMO

Reinforcement learning promises to solve complex sequential-decision problems autonomously by specifying a high-level reward function only. However, reinforcement learning algorithms struggle when, as is often the case, simple and intuitive rewards provide sparse1 and deceptive2 feedback. Avoiding these pitfalls requires a thorough exploration of the environment, but creating algorithms that can do so remains one of the central challenges of the field. Here we hypothesize that the main impediment to effective exploration originates from algorithms forgetting how to reach previously visited states (detachment) and failing to first return to a state before exploring from it (derailment). We introduce Go-Explore, a family of algorithms that addresses these two challenges directly through the simple principles of explicitly 'remembering' promising states and returning to such states before intentionally exploring. Go-Explore solves all previously unsolved Atari games and surpasses the state of the art on all hard-exploration games1, with orders-of-magnitude improvements on the grand challenges of Montezuma's Revenge and Pitfall. We also demonstrate the practical potential of Go-Explore on a sparse-reward pick-and-place robotics task. Additionally, we show that adding a goal-conditioned policy can further improve Go-Explore's exploration efficiency and enable it to handle stochasticity throughout training. The substantial performance gains from Go-Explore suggest that the simple principles of remembering states, returning to them, and exploring from them are a powerful and general approach to exploration-an insight that may prove critical to the creation of truly intelligent learning agents.

2.
Artif Life ; 26(2): 274-306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271631

RESUMO

Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an algorithmic process that transcends the substrate in which it occurs. Indeed, many researchers in the field of digital evolution can provide examples of how their evolving algorithms and organisms have creatively subverted their expectations or intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in behaviors and outcomes, uncannily convergent with ones found in nature. Such stories routinely reveal surprise and creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. Bugs are fixed, experiments are refocused, and one-off surprises are collapsed into a single data point. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This article is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.


Assuntos
Algoritmos , Biologia Computacional , Criatividade , Vida , Evolução Biológica
3.
Evol Comput ; 19(2): 189-223, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20868264

RESUMO

In evolutionary computation, the fitness function normally measures progress toward an objective in the search space, effectively acting as an objective function. Through deception, such objective functions may actually prevent the objective from being reached. While methods exist to mitigate deception, they leave the underlying pathology untreated: Objective functions themselves may actively misdirect search toward dead ends. This paper proposes an approach to circumventing deception that also yields a new perspective on open-ended evolution. Instead of either explicitly seeking an objective or modeling natural evolution to capture open-endedness, the idea is to simply search for behavioral novelty. Even in an objective-based problem, such novelty search ignores the objective. Because many points in the search space collapse to a single behavior, the search for novelty is often feasible. Furthermore, because there are only so many simple behaviors, the search for novelty leads to increasing complexity. By decoupling open-ended search from artificial life worlds, the search for novelty is applicable to real world problems. Counterintuitively, in the maze navigation and biped walking tasks in this paper, novelty search significantly outperforms objective-based search, suggesting the strange conclusion that some problems are best solved by methods that ignore the objective. The main lesson is the inherent limitation of the objective-based paradigm and the unexploited opportunity to guide search through other means.


Assuntos
Algoritmos , Evolução Biológica , Inteligência Artificial
4.
PLoS One ; 10(8): e0132886, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26266804

RESUMO

Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term.


Assuntos
Evolução Biológica , Extinção Biológica , Modelos Estatísticos , Adaptação Fisiológica , Animais , Simulação por Computador , Robótica/estatística & dados numéricos
5.
Artif Life ; 21(1): 21-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25514432

RESUMO

An important goal in both artificial life and biology is uncovering the most general principles underlying life, which might catalyze both our understanding of life and engineering lifelike machines. While many such general principles have been hypothesized, conclusively testing them is difficult because life on Earth provides only a singular example from which to infer. To circumvent this limitation, this article formalizes an approach called radical reimplementation. The idea is to investigate an abstract biological hypothesis by intentionally reimplementing its main principles to diverge maximally from existing natural examples. If the reimplementation successfully exhibits properties resembling biology, it may support the underlying hypothesis better than an alternative example inspired more directly by nature. The approach thereby provides a principled alternative to a common tradition of defending and minimizing deviations from nature in artificial life. This work reviews examples that can be interpreted through the lens of radical reimplementation to yield potential insights into biology despite having purposely unnatural experimental setups. In this way, radical reimplementation can help renew the relevance of computational systems for investigating biological theory and can act as a practical philosophical tool to help separate the fundamental features of terrestrial biology from the epiphenomenal.

6.
PLoS One ; 8(4): e62186, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637999

RESUMO

Why evolvability appears to have increased over evolutionary time is an important unresolved biological question. Unlike most candidate explanations, this paper proposes that increasing evolvability can result without any pressure to adapt. The insight is that if evolvability is heritable, then an unbiased drifting process across genotypes can still create a distribution of phenotypes biased towards evolvability, because evolvable organisms diffuse more quickly through the space of possible phenotypes. Furthermore, because phenotypic divergence often correlates with founding niches, niche founders may on average be more evolvable, which through population growth provides a genotypic bias towards evolvability. Interestingly, the combination of these two mechanisms can lead to increasing evolvability without any pressure to out-compete other organisms, as demonstrated through experiments with a series of simulated models. Thus rather than from pressure to adapt, evolvability may inevitably result from any drift through genotypic space combined with evolution's passive tendency to accumulate niches.


Assuntos
Evolução Biológica , Modelos Teóricos , Adaptação Biológica , Simulação por Computador , Evolução Molecular , Genótipo , Modelos Genéticos , Fenótipo , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA