RESUMO
Radiotherapy, a common cancer treatment, leads to infertility in male cancer survivors, particularly young and middle-aged patients. Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD +), plays crucial roles in energy metabolism, DNA repair, and gene expression. The purpose of this study is to investigate the protective effects and underlying mechanisms of NMN against ionizing radiation (IR)-induced testicular injury and spermatogenic dysfunction in an adult male mouse model. To assess the effects of NMN, single whole-body γ-ray irradiation is used to induce testicular injury and spermatogenic dysfunction in adult male mice. NMN is orally administered at 500â mg/kg before and after IR exposure. The structural and cellular damage to the testes caused by 5 Gy γ-ray irradiation, as well as the protective effect of NMN on testicular spermatogenic dysfunction, are evaluated. The serum hormone testosterone, LH, and FSH levels, as well as testicular NAD +, lactate, and pyruvate levels, are detected. Furthermore, the expressions of the apoptosis-related genes Bcl-2, Bax, and Caspase-3 and the rate-limiting enzymes HK2, PKM2, and LDHA, which are potentially associated with the mechanism of injury, are examined. The results demonstrate that 5â Gy γ-ray irradiation exposure causes a decrease in the serum testosterone, LH, and FSH levels in adult male mice, as well as in the testicular NAD +, lactate, and pyruvate levels, and causes damage to the testicular structure and cells. Morphometric analysis reveal a decrease in the testis mass, seminiferous tubule diameter, and height of the germinal epithelium. The sperm quantity, motility, and testicular volume are reduced in the 5â Gy group but are restored by NMN supplementation. NMN intervention downregulates the expressions of proapoptotic genes ( Bax and Caspase-3) and upregulates the expression of an antiapoptotic gene ( Bcl- 2). Sertoli cells marker genes ( WT-1, GATA-4, SOX9, and vimentin) and glycolysis rate-limiting enzyme-encoding genes ( HK2, PKM2, LDHA) are significantly upregulated. In summary, NMN has a positive regulatory effect on testicular spermatogenic dysfunction in male mice induced by ionizing radiation. This positive effect is likely achieved by promoting the proliferation of spermatogenic cells and activating glycolytic pathways. These findings suggest that NMN supplementation may be a potential protective strategy to prevent reproductive damage to male subjects from ionizing radiation.
RESUMO
PURPOSE: The aim of this meta-analysis was comparing the efficacy of GnRH antagonist (GnRH-ant) protocol and progestin-primed ovarian stimulation (PPOS) in polycystic ovarian syndrome (PCOS) women. METHODS: A search was conducted from PubMed, Embase, The Cochrane library, Web of Science, and Scopus databases to collect clinical papers regarding GnRH-ant protocol and PPOS protocol from inception to September 2023. Subsequently, the retrieved documents were screened, and the content of the documents that conformed to the requirements was extracted. Moreover, statistical meta-analyses were conducted using the RevMan 5.4 software. Furthermore, with the use of a star-based system and the Cochrane handbook, the methodological quality of the covered papers was evaluated on the Ottawa-Newcastle scale. RESULTS: A total of eight papers were covered in the meta-analysis, with 2156 PCOS women enrolled (i.e., 1085 patients in the GnRH-ant protocol group and 1071 patients in the PPOS group). As indicated by the meta-analysis results, the PPOS group was correlated with a lower risk of ovarian hyperstimulation syndrome (OHSS) (SMD = 9.24, [95% CI: (2.50, 34.21)], P = 0.0009), more gonadotropin (Gn) dose (SMD = - 0.34, [95% CI: (- 0.56, - 0.13)], P = 0.002) compared with GnRH-ant group. No statistical difference was identified on the oocytes condition and pregnancy outcomes. CONCLUSIONS: As revealed by the data of this study, the progesterone protocol is comparable with the GnRH-ant protocol in oocytes condition and clinical outcomes. The progestin-primed ovarian stimulation could serve as an alternative for polycystic ovarian syndrome women who have failed in GnRH antagonist protocol. The above-described conclusions should be verified by more high-quality papers due to the limitation of the number and quality of included papers. TRIAL REGISTRATION: PROSPERO registration: CRD42023411284.
Assuntos
Síndrome do Ovário Policístico , Progestinas , Gravidez , Humanos , Feminino , Progestinas/farmacologia , Progestinas/uso terapêutico , Síndrome do Ovário Policístico/tratamento farmacológico , Fertilização in vitro/métodos , Hormônio Liberador de Gonadotropina , Indução da Ovulação/métodos , Esteroides , Antagonistas de Hormônios/uso terapêutico , Metanálise como Assunto , Revisões Sistemáticas como AssuntoRESUMO
Polystyrene plastic pollution poses a pressing environmental concern and represents a significant risk factor for infertility. Despite this, a comprehensive overview of the field remains scarce, with future trends largely unknown. Bibliometrics, an applied mathematical and statistical method, offers a means to analyze textual information across various levels, facilitating quantitative assessments of all knowledge carriers and unveiling the nature and developmental trajectories of a discipline. This study aimed to employ bibliometric methods to scrutinize the current status and research hotspots within the realm of polystyrene and infertility. Literature spanning from 1980 to 2023 pertaining to polystyrene and infertility was retrieved from the core database of Web of Science. Quantitative analyses were conducted utilizing CiteSpace (version 5.7.R7), VOSviewer (version 1.6.18.0), and an online literature analysis website (https://bibliometric.com/). The analysis visually represented countries, institutions, authors, journals, and keywords within the field. This study delved into the development history, knowledge structure, research hotspots, and potential trends in the field, furnishing a macro perspective for researchers. The investigation encompassed 267 articles published across 120 journals by 1,352 authors affiliated with 417 institutions in 51 countries, with these articles garnering 10,310 citations across 2,811 journals. The top three countries contributing the most articles were China, the United States, and Germany. In essence, the research hotspots primarily revolved around metabolism, endocrinology, and immunity. Despite China's relatively recent entry into this field, its rapid development is evident. However, the low citation frequency suggests a need for improved article quality.
Assuntos
Bibliometria , Infertilidade , Poliestirenos , Humanos , Infertilidade/terapia , Infertilidade/epidemiologia , FemininoRESUMO
RESEARCH QUESTION: What are the effects of alpha-ketoglutarate (α-KG) treatment on the ovarian morphology and ovarian reserve function of rats with cyclophosphamide (CTX)-induced premature ovarian insufficiency (POI)? DESIGN: Thirty female Sprague Dawley rats were randomly allocated to a control group (nâ¯=â¯10) and a POI group (nâ¯=â¯20). Cyclophosphamide was administered for 2 weeks to induce POI. The POI group was then divided into two groups: a CTX-POI group (nâ¯=â¯10), administered normal saline, and a CTX-POIâ¯+â¯α-KG group (nâ¯=â¯10), administered α-KG 250 mg/kg per day for 21 days. Body mass and fertility was assessed at the end of the study. Serum samples were collected for hormone concentration measurement, and biochemical, histopathological, TUNEL, immunohistochemical and glycolytic pathway analyses were conducted for each group. RESULTS: The α-KG treatment increased body mass and ovarian index of rats, partially normalized their disrupted estrous cycles, prevented follicular loss, restored ovarian reserve, and increased pregnancy rate and litter sizes of rats with POI. It significantly reduced serum concentration of FSH (P < 0.001), increased that of oestradiol (P<0.001) and reduced apoptosis of granulosa cells (Pâ¯=â¯0.0003). Moreover, α-KG increased concentrations of lactate (Pâ¯=â¯0.015) and ATP (Pâ¯=â¯0.025), reduced that of pyruvate (P<0.001) and increased expression of rate-limiting enzymes of glycolysis in the ovary. CONCLUSIONS: α-KG treatment ameliorates the deleterious effects of CTX on the fertility of female rats, possibly by reducing the apoptosis of ovarian granulosa cells and restoring glycolysis.
Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Gravidez , Humanos , Ratos , Feminino , Animais , Ácidos Cetoglutáricos/efeitos adversos , Ratos Sprague-Dawley , Insuficiência Ovariana Primária/terapia , Ciclofosfamida/efeitos adversos , ApoptoseRESUMO
Dendrobium nobile Lindl polysaccharides (DNLP) exhibited various biological functions. This study aimed to investigate the protective effects of DNLP on testicular spermatogenic function in streptozotocin (STZ)-induced diabetic rats in comparison with metformin. The blood glucose level was significantly increased and the homeostatic model assessment for insulin resistance (HOMA-IR) aggravated markedly in diabetic rats. The weight of testis and epididymis, and the sperm number and motility were decreased in the diabetic rats. The pathologic changes occurred in the spermatogenic tubules along with the decreased number of spermatogenic cells, downregulated proliferating cell nuclear antigen (PCNA) and Sirtuin 1 (SIRT1) expression and increased cell apoptosis in the testes. Compared with the model group, DNLP and metformin treatment significantly decreased the level of blood glucose, improved the HOMA-IR, and increased the weight of testis and epididymis, as well as the sperm number and sperm motility. Furthermore, the pathologic changes in the spermatogenic tubules improved significantly with increased number of spermatogenic cells, the upregulation of PCNA and SIRT1 and suppression of cell apoptosis in the testes. Collectively, our study for the first time examined the effects of DNLP on the male reproductive system of STZ-induced diabetic rats, and indicated that DNLP was protective against diabetes mellitus-induced testis injury via increasing the proliferation, inhibiting cell apoptosis and upregulating SIRT1 expression in testicular spermatogenic cells.
Assuntos
Dendrobium , Diabetes Mellitus Experimental , Metformina , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Antígeno Nuclear de Célula em Proliferação , Ratos , Sirtuína 1/metabolismo , Motilidade dos Espermatozoides , Estreptozocina/efeitos adversos , Estreptozocina/metabolismo , Testículo/metabolismoRESUMO
Diabetes mellitus (DM), a high incidence metabolic disease, is related to the impairment of male spermatogenic function. Spermidine (SPM), one of the biogenic amines, was identified from human seminal plasma and believed to have multiple pharmacological functions. However, there exists little evidence that reported SPM's effects on moderating diabetic male spermatogenic function. Thus, the objective of this study was to investigate the SPM's protective effects on testicular spermatogenic function in streptozotocin (STZ)-induced type 1 diabetic mice. Therefore, 40 mature male C57BL/6 J mice were divided into four main groups: the control group (n = 10), the diabetic group (n = 10), the 2.5 mg/kg SPM-treated diabetic group (n = 10) and the 5 mg/kg SPM-treated diabetic group (n = 10), which was given intraperitoneally for 8 weeks. The type 1 diabetic mice model was established by a single intraperitoneal injection of STZ 120 mg/kg. The results showed that, compare to the control group, the body and testis weight, as well the number of sperm were decreased, while the rate of sperm malformation was significantly increased in STZ-induced diabetic mice. Then the testicular morphology was observed, which showed that seminiferous tubule of testis were arranged in mess, the area and diameter of which was decreased, along with downregulated anti-apoptotic factor (Bcl-2) expression, and upregulated pro-apoptotic factor (Bax) expression in the testes. Furthermore, testicular genetic expression levels of Sertoli cells (SCs) markers (WT1, GATA4 and Vimentin) detected that the pathological changes aggravated observably, such as the severity of tubule degeneration increased. Compared to the saline-treated DM mice, SPM treatment markedly improved testicular function, with an increment in the body and testis weight as well as sperm count. Pro-apoptotic factor (Bax) was down-regulated expression with the up-regulated expression of Bcl-2 and suppression of apoptosis in the testes. What's more, expression of WT1, GATA4, Vimentin and the expressions of glycolytic rate-limiting enzyme genes (HK2, PKM2, LDHA) in diabetic testes were also upregulated by SPM supplement. The evidence derived from this study indicated that the SMP's positive effect on moderating spermatogenic disorder in T1DM mice's testis. This positive effect is delivered via promoting spermatogenic cell proliferation and participating in the glycolytic pathway's activation.
Assuntos
Diabetes Mellitus Experimental , Glicólise/efeitos dos fármacos , Infertilidade Masculina , Espermatogênese/efeitos dos fármacos , Espermidina/farmacologia , Animais , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Infertilidade Masculina/tratamento farmacológico , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise do Sêmen , Espermatogênese/fisiologia , Espermidina/uso terapêutico , Estreptozocina , Testículo/efeitos dos fármacos , Testículo/metabolismoRESUMO
OBJECTIVE: Polycystic ovary syndrome (PCOS) is characterized by follicular dysplasia. An insufficient glycolysis-derived energy supply of granulosa cells (GCs) is an important cause of follicular dysplasia in PCOS. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been proven to regulate the function of GCs. In this study, exosomes extracted from clinical FF samples were used for transcriptome sequencing (RNA-seq) analysis, and a human ovarian granulocyte tumour cell line (KGN cells) was used for in vitro mechanistic studies. METHODS AND RESULTS: In FF exosomal RNA-seq analysis, a decrease in glycolysis-related pathways was identified as an important feature of the PCOS group, and the differentially expressed miR-143-3p and miR-155-5p may be regulatory factors of glycolysis. By determining the effects of miR-143-3p and miR-155-5p on hexokinase (HK) 2, pyruvate kinase muscle isozyme M2 (PKM2), lactate dehydrogenase A (LDHA), pyruvate, lactate and apoptosis in KGN cells, we found that upregulated miR-143-3p expression in exosomes from the PCOS group inhibited glycolysis in KGN cells; knockdown of miR-143-3p significantly alleviated the decrease in glycolysis in KGN cells in PCOS. MiR-155-5p silencing attenuated glycolytic activation in KGN cells; overexpression of miR-155-5p significantly promoted glycolysis in KGN cells in PCOS. In this study, HK2 was found to be the mediator of miR-143-3p and miR-155-5p in FF-derived exosome-mediated regulation of glycolysis in KGN cells. Reduced glycolysis accelerated apoptosis of KGN cells, which mediated follicular dysplasia through ATP, lactate and apoptotic pathways. CONCLUSIONS: In conclusion, these results indicate that miR-143-3p and miR-155-5p in FF-derived exosomes antagonistically regulate glycolytic-mediated follicular dysplasia of GCs in PCOS. Video Abstract.
Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Proliferação de Células , Feminino , Líquido Folicular/metabolismo , Glicólise , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Humanos , Lactatos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologiaRESUMO
Antioxidants may provide a complementary treatment for patients with chronic diseases. Nevertheless, studies that have measured the effects of antioxidant on diabetes complications have provided conflicting results. This study aimed to elucidate the association between antioxidant and diabetic complications and to develop robust evidence for clinical decisions by systematic reviews and meta-analysis. PubMed, Embase, The Cochrane Library, Web of Science, Scopus databases were searched to collect clinical studies related to the efficacy of antioxidants in the treatment of diabetes complications from inception to May 5, 2021. Statistical meta-analyses were performed using the RevMan 5.4 software. Stata16 software was used to detect publication bias. The data of diabetic nephropathy (DN), diabetic nonalcoholic fatty liver disease (NAFLD), and diabetic periodontitis were collected to analyze the effect of antioxidant on diabetes and the above three complications. The meta-analysis results showed that antioxidant treatment was associated with significantly changes in the fasting plasma glucose (FPG) (standardized mean difference [SMD]: - 0.21 [95% confidence interval [CI]: - 0.33, -0.10], p < 0.001), hemoglobin A1c (HbA1c) (MD: - 0.41 [95% CI: - 0.63, -0.18], p < 0.001), total antioxidant capacity (TAC) (SMD: 0.44 [95% CI: 0.24, 0.63], p < 0.001) and malondialdehyde (MDA) (SMD: - 0.82 [95% CI: - 1.24, -0.41], p < 0.001) than the control group. Antioxidant supplements have the potential to treat three complications of diabetes. In conclusion, the meta-analysis results indicate that antioxidant treatment is effective clinically for diabetes mellitus and its complications.
Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Antioxidantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Suplementos Nutricionais , Hemoglobinas Glicadas , HumanosRESUMO
Spermatogenic dysfunction is one of the major secondary complications of diabetes; however, the underlying mechanisms remain ill-defined, and there is no available drug or strategy for the radical treatment of diabetic spermatogenic dysfunction. Therefore, the objective of this study is to investigate the protective effects of nicotinamide mononucleotide (NMN) on testicular spermatogenic function in streptozotocin (STZ)-induced diabetic mice. The results show that oral administration of NMN significantly increases the body and testis weight and the number of sperms. Moreover, the abnormal sperm count and the rate of sperm malformation are significantly decreased compared with the saline-treated diabetic mice. Histological analysis reveals that NMN treatment significantly increases the area and diameter of seminiferous tubules, accompanied by an increased number of spermatogenic cells and sperms. Immunohistochemistry and qRT-PCR results show that NMN increases Bcl-2 expression and decreases Bax expression in the testis. NMN also increases the protein expression of Vimentin and the mRNA expressions of WT1 and GATA4. In addition, qRT-PCR, western blot analysis and immunohistochemistry results also show that NMN increases the expressions of glycolysis-related rate-limiting enzymes including HK2, PKM2, and LDHA. In summary, this study demonstrates the protective effects of NMN on the testis in an STZ-induced diabetic mice model. NMN exerts its protective effects via reducing spermatogenic cell apoptosis by regulating glycolysis of Sertoli cells in diabetic mice. This study provides an experimental basis for the future clinical application of NMN in diabetes-induced spermatogenic dysfunction.
Assuntos
Diabetes Mellitus Experimental , Mononucleotídeo de Nicotinamida , Masculino , Camundongos , Animais , Mononucleotídeo de Nicotinamida/efeitos adversos , Mononucleotídeo de Nicotinamida/metabolismo , Estreptozocina/efeitos adversos , Diabetes Mellitus Experimental/induzido quimicamente , Sêmen/metabolismo , GlicóliseRESUMO
BACKGROUND: Diabetes mellitus (DM), a chronic metabolic disease, severely impairs male reproductive function. However, the underpinning mechanisms are still incompletely defined, and there are no effective strategies or medicines for these reproductive lesions. Icariin (ICA), the main active component extracted from Herba epimedii, is a flavonoid traditionally used to treat testicular dysfunction. Whether ICA can improve male reproductive dysfunction caused by DM and its underlying mechanisms are still unclear. In this study, by employing metformin as a comparative group, we evaluated the protective effects of ICA on male reproductive damages caused by DM and explored the possible mechanisms. METHODS: Rats were fed with a high fat diet (HFD) and then intraperitoneally injected with streptozotocin (STZ) to induce diabetes. Diabetic rats were randomly divided into T2DM + saline group, T2DM + metformin group and T2DM + ICA group. Rats without the treatment of HFD and STZ were used as control group. The morphology of testicular tissues was examined by histological staining. The mRNA expression levels were determined by quantitative real-time PCR. Immunostaining detected the protein levels of proliferating cell nuclear antigen (PCNA), hypoxia-inducible factor 1-alpha (HIF-1α) and sirtuin 1 (SIRT1) in testicular tissues. TUNEL assay was performed to determine cell apoptosis in the testicular tissues. The protein expression levels of HIF-1α and SIRT1 in the testicular tissues were determined by western blot assay. RESULTS: ICA effectively improved male reproductive dysfunction of diabetic rats. ICA administration significantly decreased fasting blood glucose (FBG) and insulin resistance index (IRI). In addition, ICA increased testis weight, epididymis weight, sperm number, sperm motility and the cross-sectional area of seminiferous tubule. ICA recovered the number of spermatogonia, primary spermatocytes and Sertoli cells. Furthermore, ICA upregulated the expression of PCNA, activated SRIT1-HIF-1α signaling pathway, and inhibited intrinsic mitochondria dependent apoptosis pathway by upregulating the expression of Bcl-2 and downregulating the expression of Bax and caspase 3. CONCLUSION: These results suggest that ICA could attenuate male reproductive dysfunction of diabetic rats possibly via increasing cell proliferation and decreasing cell apoptosis of testis. ICA potentially represents a novel therapeutic strategy against DM-induced testicular damages.
Assuntos
Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Flavonoides/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proliferação de Células/fisiologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Flavonoides/farmacologia , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estreptozocina , Testículo/metabolismoRESUMO
BACKGROUND: Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disease with unknown pathogenesis. However, the treatment of Diane-35 combined with metformin can improve the endocrine and ovulation of PCOS. In this study, we investigated the effects of Diane-35 combined with metformin (DM) treatment on ovulation and glucose metabolism in a PCOS rat model. METHODS: Sprague Dawley rats were divided into 3 groups, control group, model group (PCOS group) and Diane-35 combined with metformin (PCOS + DM group). The mRNA expression levels were determined by qRT-PCR. The hormone levels were determined by enzyme-linked immunosorbent assay. Immunostaining detected the protein levels of lactate dehydrogenase A (LDH-A), pyruvate kinase isozyme M2 (PKM2) and sirtuin 1 (SIRT1) in the ovarian tissues. TNUEL assay was performed to determine cell apoptosis in the PCOS rats. The metabolites in the ovarian tissues were analyzed by liquid chromatography with tandem mass spectrometry. RESULTS: PCOS rats showed an increased in body weight, levels of luteinizing hormone and testosterone and insulin resistance, which was significantly attenuated by the DM treatment. The DM treatment improved disrupted estrous cycle and increased the granulosa cells of the ovary in the PCOS rats. The decreased proliferation and increased cell apoptosis of granulosa cells in the ovarian tissues of PCOS rats were significantly reversed by the DM treatment. The analysis of metabolics revealed that ATP and lactate levels were significantly decreased in PCOS rats, which was recovered by the DM treatment. Furthermore, the expression of LDH-A, PKM2 and SIRT1 was significantly down-regulated in ovarian tissues of the PCOS rats; while the DM treatment significantly increased the expression of LDH-A, PKM2 and SIRT1 in the ovarian tissues of the PCOS rats. CONCLUSION: In conclusion, our study demonstrated that Diane-35 plus metformin treatment improved the pathological changes in the PCOS rats. Further studies suggest that Diane-35 plus metformin can improve the energy metabolism of the ovary via regulating the glycolysis pathway. The mechanistic studies indicated that the therapeutic effects of Diane-35 plus metformin treatment in the PCOS rats may be associated with the regulation of glycolysis-related mediators including PKM2, LDH-A and SIRT1.
Assuntos
Antagonistas de Androgênios/farmacologia , Acetato de Ciproterona/farmacologia , Etinilestradiol/farmacologia , Glicólise/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Ovulação/efeitos dos fármacos , Síndrome do Ovário Policístico/metabolismo , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Combinação de Medicamentos , Quimioterapia Combinada , Feminino , Resistência à Insulina , Lactato Desidrogenase 5/efeitos dos fármacos , Lactato Desidrogenase 5/metabolismo , Hormônio Luteinizante/efeitos dos fármacos , Hormônio Luteinizante/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Piruvato Quinase/efeitos dos fármacos , Piruvato Quinase/metabolismo , Ratos , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/metabolismo , Testosterona/metabolismoRESUMO
PURPOSE: This study aimed to determine the effects of drilling and thinning treatment of laser-assisted hatching on the expression and methylation of imprinted gene IGF2/H19 in embryos and offspring. METHODS: The prehatching blastocysts with treatment of drilling or thinning, or control prehatching blastocysts, were transplanted in surrogate uteri. The DNA methylation of IGF2/H19 imprinting control region (ICR) and the expression of IGF2 and H19 were respectively evaluated using bisulfite conversion-mediated sequencing and real-time PCR. RESULTS: The drilling group showed a significant increase in the development rate of hatched blastocysts in comparison with the control and thinning group. DNA methylation level of IGF2/H19 ICR of hatched blastocysts in the thinning group was 27.33% in comparison with the 38.67% and 36% observed in the control and drilling group. The thinning treatment increased the DNA methylation level of IGF2/H19 ICR in the placenta in comparison with the control and drilling group. The drilling and thinning treatment decreased the expression level of H19 mRNA in prehatching and hatched blastocysts as well as placenta, while a significant increase in the expression level of H19 mRNA of offspring was observed in the thinning group. The thinning treatment increased the expression level of IGF2 mRNA of prehatching blastocysts and offspring and a significant decrease in placenta, while the drilling treatment resulted in a significant increase in the expression level of IGF2 mRNA of hatched blastocysts and placenta. CONCLUSION: These observations suggested that drilling used for hatching of in vitro cultured mouse blastocysts may improve the production of offspring.
Assuntos
Blastocisto/fisiologia , Metilação de DNA , Fertilização in vitro/métodos , Impressão Genômica , Fator de Crescimento Insulin-Like II/metabolismo , Placenta/embriologia , RNA Longo não Codificante/genética , Animais , Animais Recém-Nascidos , Blastocisto/citologia , Blastocisto/efeitos da radiação , Técnicas de Cultura Embrionária , Feminino , Fator de Crescimento Insulin-Like II/genética , Lasers , Masculino , Camundongos , GravidezRESUMO
The binding of exogenous DNA to sperm is a key process for sperm-mediated gene transfer; however, the underlying molecular mechanisms have yet to be elucidated. In the present study, we aimed to identify the DNA binding proteins (DBPs) in rabbit sperm and to gain further understanding of the molecular mechanism of sperm and exogenous DNA interaction. Native polyacrylamide gel electrophoresis was used for separating free sperm proteins and complexes of DNA fragment/sperm proteins. A distinct band was found after Coomassie blue staining, and seven potential proteins were identified by mass spectrometry analysis. An analysis of the physical/chemical properties of the seven proteins revealed that the sperm inner acrosomal membrane protein IAM38 (IAM38) matched the features of the DBPs. Western blotting analysis showed that the IAM38 and CD4 were present in the sperm but not in the seminal plasma. Blocking of the IAM38 impaired the DNA-binding capacity of the sperm. Blocking the CD4 decreased the DNA-uptake capacity of the sperm but did not influence the DNA-binding capacity of the sperm. Moreover, the EGFP-positive embryos and EGFP-positive blastocysts were also decreased after IAM38 blocking or CD4 blocking in comparison with the control group. In conclusion, our results imply that foreign DNA first binds to the transmembrane IAM38 of the sperm plasma membrane and then forms the complex of DNA/IAM38/CD4 with CD4 to complete the transportation of exogenous DNA into the nucleus of sperm.
Assuntos
Acrossomo/metabolismo , Proteínas de Ligação a DNA/isolamento & purificação , Espermatozoides/metabolismo , Acrossomo/fisiologia , Animais , Blastocisto/metabolismo , Antígenos CD4/metabolismo , Membrana Celular/metabolismo , DNA/análise , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Masculino , Coelhos , Cabeça do Espermatozoide/fisiologia , Espermatozoides/fisiologiaRESUMO
Testis has been reported to be a naturally oxygen-deprived organ. Lactate produced by glycolysis of Sertoli cells is an important source of energy in spermatogenic cells, which quickly provides adenosine triphosphate to meet the needs of rapidly proliferating spermatogenic cells for energy and substances. Wide attention has been drawn to the studies of energy metabolism and its regulatory mechanisms in normal spermatogenesis. It is essential to illuminate the regulation of glucose transport by glucose transporters in Sertoli cells, the catalysis of pyruvate to lactic acid by lactate dehydrogenase and the transport process of the single carboxylate transporter to lactic acid under the influence of different factors or diseases, which play important roles in ensuring the normal spermatogenesis and male reproductive function. This review summarizes the changes of energy metabolism in spermatogenesis and the mechanisms of endocrine factors, signaling pathways, miRNAs and protein acetylation regulating cell glycolysis, aiming to provide some important reference for the elucidation of the molecular metabolism of spermatogenesis and clinical treatment of relevant diseases.
Assuntos
Metabolismo Energético , Glicólise , Células de Sertoli/metabolismo , Espermatogênese , Humanos , Masculino , TestículoRESUMO
OBJECTIVE: To explore the change in the proliferation of spermatogenic cells in the male mouse with infertility induced by exogenous estradiol benzoate (EB). METHODS: Sixty male mice aged 4 weeks were randomly divided into a control, a low-dose EB, and a high-dose EB group to be injected intramuscularly with corn oil at 150 µl or EB at 5 or 10 mg/kg, respectively, every other day for 4 weeks. Then, we obtained the weight and indexes of the testis, performed HE staining of the paraffin sections of the testis tissue and epididymal cauda, counted the spermatozoa in the epididymal sperm suspension, and determined the expression of the proliferating cell nuclear antigen (PCNA), the mRNA expressions of CyclinA1, CyclinB1, VASA and p53, and the protein expressions of p53 and phosphorylated p53 in the testis by immunohistochemistry, qRT-PCR and Western blot, respectively. RESULTS: In comparison with the controls, the mice treated with EB showed significantly decreased testicular indexes (P <0.05), no sperm in the sperm suspension or epididymal tubes, remarkably reduced numbers of spermatogonia, primary spermatocytes and Sertoli cells (P <0.05), down-regulated expression of PCNA (P <0.05) and mRNA expressions of CyclinA1, CyclinB1, PCNA and VASA in the seminiferous tubules (P <0.05), but a dose-dependent increase of the p53 level (P <0.05). Western blot revealed markedly higher levels of p53 protein expression and phosphorylation in the EB than in the control group (P <0.05) and even higher in the 10 mg/kg than in the 5 mg/kg EB group (P <0.05). CONCLUSIONS: EB inhibited the proliferation of spermatogenic cells by down-regulating the expressions of cell cycle-related factors in a dose-dependent manner, which might contribute to abnormal proliferation of spermatogenic cells in the testis of infertile male mice.
Assuntos
Proliferação de Células/efeitos dos fármacos , Anticoncepcionais/farmacologia , Estradiol/análogos & derivados , Infertilidade Masculina/patologia , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Proliferação de Células/fisiologia , Anticoncepcionais/administração & dosagem , Ciclina A1/metabolismo , Ciclina B1/metabolismo , RNA Helicases DEAD-box/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Epididimo/citologia , Epididimo/efeitos dos fármacos , Estradiol/administração & dosagem , Estradiol/farmacologia , Masculino , Camundongos , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Túbulos Seminíferos/citologia , Túbulos Seminíferos/efeitos dos fármacos , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Contagem de Espermatozoides , Espermatócitos/citologia , Espermatócitos/efeitos dos fármacos , Espermatogônias/citologia , Espermatogônias/efeitos dos fármacos , Espermatozoides/citologia , Testículo/citologia , Testículo/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
To study the role of microRNA (miR) in the lactation physiology of water buffalo, 2 multiparous dairy buffaloes (including an 8-yr-old buffalo that had been lactating for 3 mo, as well as a 10-yr-old nonlactating, nonpregnant buffalo) were used for miR library construction. The profile of differentially expressed miR in lactating and nonlactating mammary gland tissues of these water buffalo were investigated using Illumina-Solexa high-throughput sequencing technology (Illumina, San Diego, CA). The data identified 259 miR families, 359 mature miR, 363 pre-miR, 230 novel buffalo miR, and 5 buffalo-specific miR that were expressed in mammary tissues. Some highly significantly differentially expressed miR were explored, including bbu-miR-497, bbu-miR-30a-5p, bbu-miR-148a, bbu-miR-29a, bbu-miR-125a, bbu-miR-125b, and bbu-miR-103. The expression patterns of 18 miR were confirmed by quantitative real-time PCR in both tissues, and the expression of bbu miR-103 and novel miR-57 constituted the largest differences between lactating and nonlactating tissues. Further functional analysis indicated that the overexpression or suppression of miR-103 in buffalo mammary epithelial cells downregulated or upregulated the expression of pantothenate kinase 3, and also significantly increased the transcription factor steroid regulatory element binding protein, followed by the acceleration of de novo synthesis of fatty acids by upregulation of acetyl coenzyme A carboxylase α expression. The expression levels of 34 predicted target genes of novel-miR-57 in lactating and nonlactating mammary gland tissues were all analyzed by quantitative real-time PCR. Finally, only the expression of docking protein 4 could be upregulated or downregulated selectively by bbu-novel-miR-57 in buffalo mammary epithelial cells and the Bcap-37 cell line. This study provides an overview of the miR expression profile of water buffalo and the interaction between some key miR and their target genes, which may improve understanding of the important roles of miR in buffalo milk fat synthesis.
Assuntos
Búfalos/genética , Glândulas Mamárias Humanas , Animais , Humanos , Lactação/genética , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , Áreas AlagadasRESUMO
Isolation and culture of spermatogonial stem cells (SSCs) are attractive for production of genetic modified offspring. In the present study, buffalo spermatogonial stem-like cells were isolated, cultured and expression pattern of different germ cell marker genes were determined. To recover spermatogonia, testes from age 3 to 7 months of buffalo were decapsulated, and seminiferous tubules were enzymatically dissociated. Two types of cells, immature sertoli cell and type A spermatogonia were observed in buffalo testes in this stage. Germ cell marker genes, OCT3/4 (Pou5f1), THY-1, c-kit, PGP9.5 (UCHL-1) and Dolichos biflorus agglutinin, were determined to be expressed both in mRNA and protein level by reverse transcription polymerase chain reaction and immunostaining in buffalo testes and buffalo spermatogonial stem-like cells, respectively. In the following, when the isolated buffalo buffalo spermatogonial stem-like cells were cultured in the medium supplemented 2.5% fetal bovine serum and 40 ng/mL glial cell-derived neurotrophic factor medium, SSCs proliferation efficiency and colony number were significantly improved than those of other groups (p<0.05). These findings may help in isolation and establishing long term in vitro culture system for buffalo spermatogonial stem-like cells, and accelerating the generation of genetic modified buffaloes.
RESUMO
BACKGROUND: Due to changes in lifestyle and dietary habits, the global population with obesity is increasing gradually, resulting in a significant rise in the number of individuals having obesity. Obesity is caused by an imbalance between energy intake and consumption, leading to excessive fat accumulation, which interferes with normal human metabolism. It is also associated with cardiovascular disease, metabolic syndrome, male reproductive endocrine regulation disorders, systemic and local inflammatory reactions, excessive oxidative stress, and apoptosis. All these factors can damage the internal environment for sperm generation and maturation, resulting in male sexual dysfunction, a decline in sperm quality, and lower fertility. This study analyzes the trends and priorities of the effects of obesity on male reproductive disorders from a bibliometric perspective. METHODS: This study uses the Web of Science as the statistical source, covering all time spans. Tools like Web of Science, VOSviewer, and CiteSpace are used to analyze countries, institutions, authors, journals, and keywords in the field. Total publications, total citations, and average number of citations are selected for statistics. RESULTS: The results show that the research on the impact of obesity on male reproductive function can be roughly divided into three stages: the initial stage, the slow development stage, and the rapid development stage. Our statistical scope includes 463 highly relevant articles that we have screened. We found that the journal with the most publications in this field is Andrologia, and the institution with the highest total citations is the University of Utah. The most influential countries, institutions, and authors in this field are the United States, the University of Utah, and Carrell, Douglas. Currently, research related to the impact of obesity on male reproduction focuses mainly on three aspects: biochemistry, molecular biology, and reproductive biology. The keyword explosion results indicate that sperm, obesity, and male reproduction are at the forefront and trends of future research in this field. There has been a shift from basic biochemical and molecular research to research on molecular mechanisms relying on omics technologies. However, we have observed that the number of papers published in 2022 is lower than in 2021, indicating a growth interruption during this period. Considering that this deviation may be due to the impact of the COVID-19 pandemic, it may hinder the progress of certain experiments in 2022. In recent years, China has rapidly developed research in this field. However, the average citation rate is relatively low, indicating the need for Chinese scholars to improve the quality of their articles further. Based on our research and in the context of global obesity, men are at risk of increased infertility. Addressing this issue relies on our continued research into the mechanisms of obesity-related male reproductive disorders. Over the past forty-three years, with the contributions of scientists worldwide, research in this field has flourished. CONCLUSION: The impact of obesity on male reproductive disorders has been extensively studied. Currently, research in this field primarily focuses on male sperm function, sperm quality, and the effects or mechanisms of cells on male reproduction. Future trends in this field should concentrate on the relationship between male fertility and energy metabolism, as well as the endocrine function of adipose tissue. This study comprehensively analyzes the current research status and global trends in obesity and male reproductive disorders. We also discuss the future developments in this field, making it easier for researchers to understand its developmental history, current status, and trends, providing valuable reference for effective exploration in this area.