Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Immunol ; 212(5): 785-800, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38251887

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein Ab disease, and autoimmune myasthenia gravis (MG) are autoantibody-mediated neurologic conditions where autoantibodies can induce Ab-dependent cellular cytotoxicity (ADCC), a NK cell-mediated effector function. However, whether ADCC is a pathogenic mechanism in patients with these conditions has not been confirmed. We sought to characterize circulatory NK cells using functional assays, phenotyping, and transcriptomics to elucidate their role in pathology. NK cells from NMOSD patients and MG patients with elevated disease burden exhibited reduced ADCC and CD56dimCD16hi NK cells, along with an elevated frequency of CD56dimCD16dim/- NK cells. We determined that ADCC induces a similar phenotypic shift in vitro. Bulk RNA sequencing distinguished the CD56dimCD16dim/- population from the canonical CD56dimCD16hi cytotoxic and CD56hiCD16- immunomodulatory subsets, as well as CD56hiCD16+ NK cells. Multiparameter immunophenotyping of NK cell markers, functional proteins, and receptors similarly showed that the CD56dimCD16dim/- subset exhibits a unique profile while still maintaining expression of characteristic NK markers CD56, CD94, and NKp44. Notably, expression of perforin and granzyme is reduced in comparison with CD56dimCD16hi NK cells. Moreover, they exhibit elevated trogocytosis capability, HLA-DR expression, and many chemokine receptors, including CCR7. In contrast with NMOSD and MG, myelin oligodendrocyte glycoprotein Ab disease NK cells did not exhibit functional, phenotypic, or transcriptomic perturbations. In summary, CD56dimCD16dim/- NK cells are a distinct peripheral blood immune cell population in humans elevated upon prior cytotoxic activity by the CD56dimCD16hi NK cell subset. The elevation of this subset in NMOSD and MG patients suggests prior ADCC activity.


Assuntos
Antineoplásicos , Autoanticorpos , Humanos , Autoanticorpos/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Células Matadoras Naturais , Citotoxicidade Imunológica , Granzimas/metabolismo , Antineoplásicos/metabolismo
2.
Environ Monit Assess ; 194(12): 896, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251103

RESUMO

Anthropogenic activity is a major driving factor of greenhouse gas emission, leading to climate change worldwide. So, the best natural approach to lowering the carbon from the atmosphere is mangroves which have more potential to sequestrate carbon. But mangroves are under threat due to land use land cover change. This research has been carried out on the mangroves of Gulf of Khambhat, Gujarat, India, where anthropic activity is affecting the mangrove forest cover with spatiotemporal heterogeneity. In the present study, multi-temporal high-resolution satellite data AVNIR-2 (Advanced Visible and Near Infrared Radiometer type-2) and LISS-4 (Linear Imaging Self-Scanning Sensors-4) were used for the demarcation of various land use/land cover class (LULC), and change analysis and assessment of mangroves health for the years 2009, 2014, and 2019. The impact of saltpan/aquaculture on mangroves growth and its health status has been calculated by various MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data products such as gross primary productivity (GPP), enhanced vegetation index (EVI), and leaf area index (LAI) in Google Earth Engine (GEE), and field-based method was also considered. This study suggests that there is a marginal increase (17.11 km2) in mangrove cover during the assessment period 2009-2019; on other side, 65.42 km2 was degraded also. However, increase in saltpan/aquaculture is imposing an adverse effect on mangroves' basal area, plant density, and productivity. Change analysis also suggests a reduction in healthy mangrove area (from 25.20 to 2.84 km2), which will have an impact on ecosystem services.


Assuntos
Ecossistema , Gases de Efeito Estufa , Carbono , Monitoramento Ambiental , Nível de Saúde , Ferramenta de Busca
3.
Environ Monit Assess ; 193(2): 52, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33423184

RESUMO

Land use and land cover changes over 1973-2017 period in peripheral Delhi were mapped based on digital classification of satellite data and their driving forces ascertained. Urban area expanded and agricultural area diminished at annual rates of 38.6% and 2.1%, respectively, during the 1973-2017 period. Urban expansion occurred more in scrub and sparse vegetation areas than in cultivated lands or ponds. Loss of cultivated land happened mostly due to abandonment of cropping and tree planting in farmhouses developed by the urban elites. Improvement in the state of forests in terms of their expansion as well as densification offsets their loss due to urbanisation, encroachment and logging. The increment in the green cover was due to strict enforcement of compensatory afforestation/forest conservation law, growing demand of ecotourism, emergence of tree-clad farmhouses and increased environmental awareness and surveillance. This research will help in comprehending policies favouring sustainable urban development.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental , Agricultura , Florestas , Índia , Urbanização
4.
JCI Insight ; 8(11)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097758

RESUMO

Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an inflammatory demyelinating CNS condition characterized by the presence of MOG autoantibodies. We sought to investigate whether human MOG autoantibodies are capable of mediating damage to MOG-expressing cells through multiple mechanisms. We developed high-throughput assays to measure complement activity (CA), complement-dependent cytotoxicity (CDC), antibody-dependent cellular phagocytosis (ADCP), and antibody-dependent cellular cytotoxicity (ADCC) of live MOG-expressing cells. MOGAD patient sera effectively mediate all of these effector functions. Our collective analyses reveal that (a) cytotoxicity is not incumbent on MOG autoantibody quantity alone; (b) engagement of effector functions by MOGAD patient serum is bimodal, with some sera exhibiting cytotoxic capacity while others did not; (c) the magnitude of CDC and ADCP is elevated closer to relapse, while MOG-IgG binding is not; and (d) all IgG subclasses can damage MOG-expressing cells. Histopathology from a representative MOGAD case revealed congruence between lesion histology and serum CDC and ADCP, and we identified NK cells, mediators of ADCC, in the cerebrospinal fluid of relapsing patients with MOGAD. Thus, MOGAD-derived autoantibodies are cytotoxic to MOG-expressing cells through multiple mechanisms, and assays quantifying CDC and ADCP may prove to be effective tools for predicting risk of future relapses.


Assuntos
Autoanticorpos , Imunoglobulina G , Humanos , Glicoproteína Mielina-Oligodendrócito , Proteínas do Sistema Complemento , Fagocitose , Citotoxicidade Imunológica
5.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606046

RESUMO

BACKGROUNDWhile B cell depletion is associated with attenuated antibody responses to SARS-CoV-2 mRNA vaccination, responses vary among individuals. Thus, elucidating the factors that affect immune responses after repeated vaccination is an important clinical need.METHODSWe evaluated the quality and magnitude of the T cell, B cell, antibody, and cytokine responses to a third dose of BNT162b2 or mRNA-1273 mRNA vaccine in patients with B cell depletion.RESULTSIn contrast with control individuals (n = 10), most patients on anti-CD20 therapy (n = 48) did not demonstrate an increase in spike-specific B cells or antibodies after a third dose of vaccine. A third vaccine elicited significantly increased frequencies of spike-specific non-naive T cells. A small subset of B cell-depleted individuals effectively produced spike-specific antibodies, and logistic regression models identified time since last anti-CD20 treatment and lower cumulative exposure to anti-CD20 mAbs as predictors of those having a serologic response. B cell-depleted patients who mounted an antibody response to 3 vaccine doses had persistent humoral immunity 6 months later.CONCLUSIONThese results demonstrate that serial vaccination strategies can be effective for a subset of B cell-depleted patients.FUNDINGThe NIH (R25 NS079193, P01 AI073748, U24 AI11867, R01 AI22220, UM 1HG009390, P01 AI039671, P50 CA121974, R01 CA227473, U01CA260507, 75N93019C00065, K24 AG042489), NIH HIPC Consortium (U19 AI089992), the National Multiple Sclerosis Society (CA 1061-A-18, RG-1802-30153), the Nancy Taylor Foundation for Chronic Diseases, Erase MS, and the Claude D. Pepper Older Americans Independence Center at Yale (P30 AG21342).


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Idoso , SARS-CoV-2 , Vacina BNT162 , COVID-19/prevenção & controle , Vacinação , Anticorpos Monoclonais , Soro Antilinfocitário , RNA Mensageiro
6.
Cell Rep ; 42(1): 111895, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36596303

RESUMO

T cell-B cell interaction is the key immune response to protect the host from severe viral infection. However, how T cells support B cells to exert protective humoral immunity in humans is not well understood. Here, we use COVID-19 as a model of acute viral infections and analyze CD4+ T cell subsets associated with plasmablast expansion and clinical outcome. Peripheral helper T cells (Tph cells; denoted as PD-1highCXCR5-CD4+ T cells) are significantly increased, as are plasmablasts. Tph cells exhibit "B cell help" signatures and induce plasmablast differentiation in vitro. Interestingly, expanded plasmablasts show increased CXCR3 expression, which is positively correlated with higher frequency of activated Tph cells and better clinical outcome. Mechanistically, Tph cells help B cell differentiation and produce more interferon γ (IFNγ), which induces CXCR3 expression on plasmablasts. These results elucidate a role for Tph cells in regulating protective B cell response during acute viral infection.


Assuntos
COVID-19 , Receptor de Morte Celular Programada 1 , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD4-Positivos , COVID-19/metabolismo , Linfócitos T Auxiliares-Indutores , Plasmócitos/metabolismo , Receptores CXCR5 , Receptores CXCR3/metabolismo
7.
Small Methods ; 7(10): e2300594, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37312418

RESUMO

How to develop highly informative serology assays to evaluate the quality of immune protection against coronavirus disease-19 (COVID-19) has been a global pursuit over the past years. Here, a microfluidic high-plex immuno-serolomic assay is developed to simultaneously measure50 plasma or serum samples for50 soluble markers including 35proteins, 11 anti-spike/receptor binding domian (RBD) IgG antibodies spanningmajor variants, and controls. This assay demonstrates the quintuplicate test in a single run with high throughput, low sample volume, high reproducibilityand accuracy. It is applied to the measurement of 1012 blood samples including in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either with acute COVID infection or vaccination. The protein analysis reveals distinct immune mediator modules that exhibit a reduced degree of diversity in protein-protein cooperation in patients with hematologic malignancies or receiving B cell depletion therapy. Serological analysis identifies that COVID-infected patients with hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-spike IgG, which can be associated with limited clonotype diversity and functional deficiency in B cells. These findings underscore the importance to individualize immunization strategies for these high-risk patients and provide an informative tool to monitor their responses at the systems level.


Assuntos
COVID-19 , Neoplasias Hematológicas , Vacinas , Humanos , COVID-19/prevenção & controle , Microfluídica , Imunoglobulina G
8.
J Clin Invest ; 132(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250467

RESUMO

B cell depletion in patients with relapsing-remitting multiple sclerosis (RRMS) markedly prevents new MRI-detected lesions and disease activity, suggesting the hypothesis that altered B cell function leads to the activation of T cells driving disease pathogenesis. Here, we performed comprehensive analyses of CD40 ligand- (CD40L-) and IL-21-stimulated memory B cells from patients with MS and healthy age-matched controls, modeling the help of follicular helper T cells (Tfh cells), and found a differential gene expression signature in multiple B cell pathways. Most striking was the impaired TIGIT expression on MS-derived B cells mediated by dysregulation of the transcription factor TCF4. Activated circulating Tfh cells (cTfh cells) expressed CD155, the ligand of TIGIT, and TIGIT on B cells revealed their capacity to suppress the proliferation of IL-17-producing cTfh cells via the TIGIT/CD155 axis. Finally, CCR6+ cTfh cells were significantly increased in patients with MS, and their frequency was inversely correlated with that of TIGIT+ B cells. Together, these data suggest that the dysregulation of negative feedback loops between TIGIT+ memory B cells and cTfh cells in MS drives the activated immune system in this disease.


Assuntos
Linfócitos B , Interleucina-17 , Esclerose Múltipla , Ligante de CD40 , Proliferação de Células , Humanos , Ligantes , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Receptores Imunológicos/genética , Células T Auxiliares Foliculares , Linfócitos T Auxiliares-Indutores , Fatores de Transcrição
9.
bioRxiv ; 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36093346

RESUMO

The immune response to SARS-CoV-2 for patients with altered immunity such as hematologic malignancies and autoimmune disease may differ substantially from that in general population. These patients remain at high risk despite wide-spread adoption of vaccination. It is critical to examine the differences at the systems level between the general population and the patients with altered immunity in terms of immunologic and serological responses to COVID-19 infection and vaccination. Here, we developed a novel microfluidic chip for high-plex immuno-serological assay to simultaneously measure up to 50 plasma or serum samples for up to 50 soluble markers including 35 plasma proteins, 11 anti-spike/RBD IgG antibodies spanning all major variants, and controls. Our assay demonstrated the quintuplicate test in a single run with high throughput, low sample volume input, high reproducibility and high accuracy. It was applied to the measurement of 1,012 blood samples including in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either with acute COVID infection or vaccination. The protein association matrix analysis revealed distinct immune mediator protein modules that exhibited a reduced degree of diversity in protein-protein cooperation in patients with hematologic malignancies and patients with autoimmune disorders receiving B cell depletion therapy. Serological analysis identified that COVID infected patients with hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-spike IgG, which could be associated with limited clonotype diversity and functional deficiency in B cells and was further confirmed by single-cell BCR and transcriptome sequencing. These findings underscore the importance to individualize immunization strategy for these high-risk patients and provide an informative tool to monitor their responses at the systems level.

10.
Remote Sens Appl ; 22: 100476, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33589876

RESUMO

The COVID 19 pandemic led to lockdown and restrictions on anthropogenic activities not only in India but all over the world. This provided an opportunity to study positive effects on environment and subsequent impact on terrestrial ecosystems such as urban, peri-urban, forest and agriculture. A variety of studies presented so far mainly include improved air quality index, water quality, reduced pollutants etc. The present study focused on few novel parameters from both polar and geostationary satellites that are not studied in context to India, and also attempts deriving/quantifying benefits rather than merely indicating qualitative improvements. Due to lack of anthropogenic activities during complete lockdown-1 (21 days from 25 March 2020) in India nighttime cooling of land surface temperature (LST) of the order of 2-6 K was observed. Amongst 10 major cities, Bhopal showed highest nighttime cooling. The cooling effect in LST was evident in 80% of industrial units distinctly indicating cooling trend. Vegetation fires were analyzed in 10 fire-prone states of India. Compared to past four-years average number of occurrences, only 45% fire occurrences occurred during lockdown, indicating strong effect of lockdown. The study also revealed that, there is increase in gross primary production in forest ecosystem to the tune of maximum 38%, during this period. Though delay in rabi crop harvest date by 1-2 weeks in majority of north Indian states was observed rise in rabi crop productivity of the order of maximum 34% was observed which is attributed to favorable environmental conditions for net carbon uptake. About 18% reduction in volumetric agricultural water demand was estimated in Indo-Gangetic region, parts of Gujarat and Rajasthan. Apart from controlling the spread of the disease, the lockdown restrictions were thus also able to show positive effects on the environment and ecosystem which might influence to rethink on strategies for sustainable development.

11.
Environ Monit Assess ; 156(1-4): 159-70, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18677545

RESUMO

Deforestation is recognized as one of the most significant component in LULC and global changes scenario. It is imperative to assess its trend and the rates at which it is occurring. The changes will have long-lasting impact on regional climate and in turn on biodiversity. In North-East India, one of the recognized global biodiversity hotspots, approximately 30% of total forest cover is under pressure of rapid land use changes. This region harbors variety of rare and endemic species of flora and fauna. It also has a strong bearing on regional climatic conditions. Extensive shifting cultivation, compounded by increasing population pressure and demands for agriculture land are the prime drivers in addition to other proximate drivers of deforestation. It is therefore of prime concern to analyse forest cover changes in the region, assess rate of change and extent and to identify the areas, which show repetitive changes. We analyzed forest cover maps from six temporal datasets based on satellite data interpretation, converted to geospatial database since 1972 till 1999. The states of Meghalaya, Nagaland and Tripura show highest changes in forest cover. Arunachal Pradesh shows least dynamic areas and maintains a good forest cover owing to its topographical inaccessibility in some areas. The present study reports the forest cover changes in the region using geospatial analysis and analyse them to devise proper management strategies.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental , Árvores , Sistemas de Informação Geográfica , Geografia , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA