Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Phys Chem Chem Phys ; 26(4): 3101-3109, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38180484

RESUMO

Vibrational spectra of a series of gas-phase metal 1+ and 2+ ions solvated by acetone molecules are collected to investigate how the metal charge, number of solvent molecules and nature of the metal affect the acetone. The spectra of Cu+(Ace)(N2)2, Cu+(Ace)4, and M2+(Ace)4, where M = Co, Ni, Cu, and Zn are measured via photodissociation by monitoring fragment ion signal as a function of IR wavenumber. The spectra show a red shift of the CO stretch and a blue shift of the C-C antisymmetric stretch. DFT calculations are carried out to provide the simulated spectra of possible isomers to be compared with the observed vibrational spectra, and specific structures are proposed. The red shift of the CO stretch increases as the number of acetone molecules decreases. Higher charge on the metal leads to a larger red shift in the CO stretch. Although all of the M2+ complexes have very similar red shifts, they are predicted to have different geometries due to their different electron configurations. Unexpectedly, we find that the calculated red shift in the CO stretch in M+/2+(Ace) is highly linearly correlated with the ionization energy of the metal for a wide range of metal cations and dications.

2.
Sensors (Basel) ; 24(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400206

RESUMO

The analysis of chemical compounds present at trace levels in liquids is important not only for environmental measurements but also, for example, in the health sector. The reference technique for the analysis of Volatile Organic Compounds (VOCs) in liquids is GC, which is difficult to use with an aqueous matrix. In this work, we present an alternative technique to GC to analyze VOCs in water. A tubular oven is used to completely vaporize the liquid sample deposited on a gauze. The oven is heated in the presence of a dinitrogen flow, and the gas is analyzed at the exit of the oven by a chemical ionization mass spectrometer developed in our laboratory. It is a low magnetic field Fourier Transform Ion Cyclotron Resonance (FT-ICR) optimized for real-time analysis. The Proton Transfer Reaction (PTR) used during the Chemical Ionization event results in the selective ionization of the VOCs present in the gas phase. The optimization of the desorption conditions is described for the main operating parameters: temperature ramp, liquid quantity, and nitrogen flow. Their influence is studied using a 100 ppmv aqueous toluene solution. The analytical method is then tested on a mixture of seven VOCs.

3.
Analyst ; 148(23): 6050-6060, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37901987

RESUMO

n-Hexane (C6H14) removal and conversion are investigated in a filamentary plasma generated by a pulsed high-voltage Dielectric Barrier Discharge (DBD) at atmospheric pressure and room temperature in a dry N2/O2 (20%) mixture with C6H14. The degradation of n-hexane and the by-product formation are analyzed in real-time using a high-resolution Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer coupled with Chemical Ionization (CI). As alkanes are reacting slowly with H3O+ ions, two precursor ions were used: O2+ to follow the n-hexane mixing ratios and H3O+ to follow the mixing ratios of organic by-products. As the CI-FTICR technique can work at high mixing ratios, studies were made between 5 and 200 ppm of n-hexane. Absorption spectroscopy is also used to follow ozone and carbon dioxide molecules. We show that the DBD efficiency increases for lower n-hexane mixing ratios and a large number of by-products are identified, with the major compounds being: formaldehyde, acetaldehyde, propanal, carbon dioxide, and carbon monoxide along with nitrate compounds. Based on the nature of the by-products characterized, a mechanism accounting for their formation is proposed.

4.
Phys Chem Chem Phys ; 24(34): 20553-20564, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35997062

RESUMO

Understanding non-thermal plasma reactivity is a complicated task as many reactions take place due to a large energy spectrum. In this work, we used a well-defined photo-triggered non-filamentous discharge to study acetone decomposition in N2/O2 gas mixtures. The plasma reactor is associated to a compact chemical ionization FTICR mass spectrometer (BTrap) in order to identify and quantify in real-time acetone and by-products in the plasma. Presence of oxygen (1 to 5%) decreased notably acetone degradation. A tremendous change is observed in the by-products distribution concomitantly to a global decrease of their total concentration. While main products observed in oxygen-free gas mix are nitrile compounds, in oxygenated media they are replaced by formaldehyde, methanol and ketene. Methanol is maximum for 1% of O2 whereas formaldehyde and ketene concentration reach their maximum value at the highest oxygen concentration tested (5%). A number of nitrate, nitrite and isocyanate organic compounds (C1 and C2) are observed as well with HNO2, HNO3 and HNCO.

5.
Chemphyschem ; 21(6): 503-509, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31990427

RESUMO

A novel approach has been developed to synthesize complex organic molecules (COMs) relevant to prebiotic chemistry, using infrared (IR) radiation to trigger the reaction. An original laboratory reactor working at low gas density and using IR irradiation was developed. In this way, glycine, the simplest brick of life, has been synthesized by assisting ion-molecule reaction with IR laser light. The ion-molecule complex constituted by acetic acid and hydroxylamine was formed in a mass spectrometer reactor and then irradiated with IR photons. As photoproducts, we obtained both glycine structures and some of its isomers. Anharmonic vibrational frequency calculations and fragmentation dynamics simulations allow for a better interpretation of the experimental data. This novel approach can be now extended to study other new synthetic pathways responsible for the formation of further COMs also with potential prebiotic relevance.

6.
Anal Chem ; 90(12): 7517-7525, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29779386

RESUMO

In this Article, a compact Fourier transform ion cyclotron resonance (FTICR) mass spectrometer based on a permanent magnet is presented. This instrument has been developed for real-time analysis of gas emissions. The instrument is well-suited to industrial applications or analysis of toxic and complex samples where the concentrations can vary rapidly on a wide range. The novelty of this instrument is the ability to use either electron ionization (EI) or chemical ionization (CI) individually or both of them alternatively. Also in CI mode, different precursor ions can be used alternatively. Volatile organic compounds (VOCs) from the ppb level to very high concentrations (% level) can be detected by CI or EI. The magnet is composed of three Halbach arrays, and the nominal field achieved is 1.5 T. The ICR cell is a 3 cm side length cubic cell. The mass range is 12-200 u with a broad band detection. The mass accuracy of 0.005 u and the resolving power allow the separation of isobaric ions such as C3H8+ and CO2+. Gas introduction via controlled gas pulses, electron ionization, ion-molecule reactions, ion selection, and detection are all performed in the ICR cell. The potential of the instrument will be illustrated by an analysis of a gas mixture containing trace components at ppm level (VOCs) and components in the 0.5-100% range (N2, alkanes, and CO2).

7.
Sensors (Basel) ; 18(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751541

RESUMO

In this paper, we present a compact Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) designed for real time analysis of volatile organic compounds (VOCs) in air or in water. The spectrometer is based on a structured permanent magnet made with NdFeB segments. Chemical ionization is implemented inside the ICR cell. The most widely used reaction is the proton transfer reaction using H3O⁺ precursor ions, but other ionic precursors can be used to extend the range of species that can be detected. Complex mixtures are studied by switching automatically from one precursor to another. The accuracy obtained on the mass to charge ratio (Δm/z 5 × 10−3), allows a precise identification of the VOCs present and the limit of detection is 200 ppb without accumulation. The time resolution is a few seconds, mainly limited by the time necessary to come back to background pressure after the gas pulses. The real time measurement will be illustrated by the monitoring of VOCs produced during the thermal degradation of a polymer and by an example where three different precursor ions are used alternatively to monitor a gas sample.

8.
J Chem Phys ; 139(7): 071102, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23968063

RESUMO

ß-trimethylsilyl-2-propyl cation has been formed by the gas phase protonation of allyl-trimethylsilane and characterized by infrared multiple photon dissociation spectroscopy. The experimental Cß-Cα (+) stretching feature at 1586 cm(-1), remarkably blue-shifted with respect to a C-C single bond stretching mode, is indicative of high double bond character, a signature of ß-stabilizing effect due to hyperconjugation of the trimethylsilyl group in the ß-position with respect to the positively charged carbon. Density functional theory calculations at the B3LYP∕6-311++G(2df,2p) level yield the optimized geometries and IR spectra for candidate isomeric cations and for neutral and charged reference species.

9.
Med Gas Res ; 13(4): 208-211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077120

RESUMO

The noble gas argon has demonstrated biological activity that may prove useful as a medical intervention. Pharmacokinetics, the disposition of the drug molecule in the body through time, is fundamental necessary knowledge to drug discovery, development and even post-marketing. The fundamental measurement in pharmacokinetic studies is blood concentration of the molecule (and its metabolites) of interest. While a physiologically based model of argon pharmacokinetics has appeared in the literature, no experimental data have been published. Thus, argon pharmaceutical development requires measurement of argon solubility in blood. This paper reports on the development of a technique based on mass spectrometry for measuring argon solubility in liquids, including blood, to be further employed in pharmacokinetics testing of argon. Based on a prototype, results are reported from sensitivity experiments using ambient air, water and rabbit blood. The key takeaway is that the system was sensitive to argon during all of the testing. We believe the technique and prototype of the quadrupole mass spectrometer gas analyzer will be capable of inferring argon pharmacokinetics through the analysis of blood samples.


Assuntos
Ar , Água , Animais , Coelhos , Argônio , Solubilidade , Espectrometria de Massas/métodos , Ar/análise , Água/química
10.
J Am Chem Soc ; 133(34): 13363-74, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21776992

RESUMO

The grafting of the triangular 1,3,5-benzene tricarboxylate linkers (denoted trim) on tetrahedral ε-Keggin polyoxometalates (POMs) capped by Zn(II) ions, formed in situ under hydrothermal conditions, has generated three novel POM-based metal organic frameworks (POMOFs). (TBA)(3)[PMo(V)(8)Mo(VI)(4)O(36)(OH)(4)Zn(4)][C(6)H(3)(COO)(3)](4/3)·6H(2)O (ε(trim)(4/3)) is a 3D open-framework built of molecular Keggin units connected by trim linkers, with channels occupied by tetrabutylammonium (TBA) counterions. ε(trim)(4/3) is a novel (3,4)-connected net, named ofp for open-framework polyoxometalate, and computer simulations have been used to evaluate its relative stability in comparison with ctn- and bor-like polymorphs, showing the stability of this novel phase directly related to its greatest density. A computational study was also undertaken with the aim of locating TBA molecules, the positions of which could not be deduced from single crystal X-ray diffraction, and further rationalizes their structure directing role. In (TBA)(3)[PMo(V)(8)Mo(VI)(4)O(37)(OH)(3)Zn(4)][C(6)H(3)(COO)(3)] (ε(2)(trim)(2)), the building unit is not the molecular Keggin but a dimerized form of this POM. Their connection via trim linkers generates a 3D framework with channels filled by TBA cations. In (TBA)(3)[PMo(V)(8)Mo(VI)(4)O(37)(OH)(3)Zn(4)][C(6)H(3)(COO)(3)]·8H(2)O ([ε(trim)](∞)), zigzag chains are connected via the organic linkers, forming 2D grids. Modified electrodes were fabricated by direct adsorption of the POMOFs on glassy carbon or entrapment in carbon paste (CPE). A remarkable electrocatalytic hydrogen evolution reaction (HER) was detected with a yield greater than 95%, and a turnover number as high as 1.2 × 10(5) was obtained after 5 h. The reported POMOF-based electrodes are more active than platinum, with a roughly 260 mV anodic shift. Finally, the electrocatalytic activities of ε(trim)(4/3)/CPE electrodes in various XCl (X = Li, Na, K, Cs) media have been studied. This allowed us to detect a cation effect and propose an electrocatalytic mechanistic pathway for the HER.

11.
Phys Chem Chem Phys ; 13(34): 15432-6, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21766124

RESUMO

Gas phase VUV single-photon photoionization spectroscopy of electrospray-produced multiply protonated cytochrome c protein (12 kDa) has been performed by means of coupling a linear quadrupole ion trap with a synchrotron beamline. The thresholds for the ionization of the 8+ and 11+ charge state precursors to radical 9+ and 12+ species were measured to be 12.75 ± 0.10 and 13.51 ± 0.10 eV, respectively.


Assuntos
Citocromos c/química , Gases/química , Íons/química , Espectrometria de Massas por Ionização por Electrospray
12.
Inorg Chem ; 49(19): 8897-903, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-20806884

RESUMO

The complexation abilities of 2,2'-bipyridine (bipy) and 2,2'-bipyridyl-N,N'-dioxide (bipydiox) toward zinc(II) and the influence of these ligands on the properties and reactivities of the investigated complexes are compared by means of mass spectrometry, IR multiphoton dissociation spectroscopy, and theoretical calculations. The binding energy of bipydiox to zinc is slightly smaller than that of bipy, namely, by 0.1 eV in the mixed complex [(bipy)(bipydiox)ZnCl](+). Accordingly, the differences in the properties and reactivities of the complexes of zinc(II)/bipydiox and zinc(II)/bipy are only minor. The mechanism of decarboxylation of [(L)Zn(CH(3)COO)](+) (L = bipy or bipydiox) is investigated in detail. The substantial difference between the ligands stems only from the possibility of oxygen transfer from bipydiox, which is here, however, observed only as a high-energy channel in the fragmentation of complexes [(bipydiox)Zn(CH(3)COO)](+).


Assuntos
2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/química , Compostos Organometálicos/química , Zinco/química , Ligantes , Simulação de Dinâmica Molecular , Estrutura Molecular , Compostos Organometálicos/síntese química , Estereoisomerismo
13.
J Phys Chem A ; 114(1): 397-407, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19957988

RESUMO

The products of 2-heptanone conversion by dielectric barrier discharge plasma are analyzed under different conditions: alternating current (ac) or pulsed mode of excitation, variable energy, variable composition of the carrier gas. The efficiency of the conversion is higher using a pulse excitation mode than an ac mode. With a small oxygen percentage (about 2-3%) added to nitrogen, 2-heptanone is about 30% more efficiently removed than in pure nitrogen, while the 2-heptanone removal decreases with an oxygen percentage higher than 3%. A new analysis method, based on chemical ionization mass spectrometry, is used for volatile organic compound detection along with chromatography. Several products issued from 2-heptanone conversion with ac excitation are identified in nitrogen and in air, and a chemical scheme is proposed to explain their formation and their treatment by the discharge. It appears that byproducts are issued not only from oxidation reactions, but also from C-C bond cleavage by collisions with electrons or nitrogen excited states.


Assuntos
Cetonas/química , Nitrogênio/química , Oxigênio/química , Impedância Elétrica
14.
J Am Soc Mass Spectrom ; 31(7): 1579-1586, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32520553

RESUMO

Methods for reduction of volatile organic compounds (VOCs) content in air depend on the application considered. For low concentration and low flux, nonthermal plasma methods are often considered as efficient. However, the complex chemistry involved is still not well understood because there is a lack of data sets of byproducts formation. To overcome this issue, rapid analytical methods are needed. We present the coupling of a rapid chemical ionization mass spectrometer (CIMS) for the real-time analysis of the VOCs formed during a degradation experiment. The high-resolution instrument used allows for chemical ionization and direct quantification of nontargeted compounds. This method is successfully applied to degradation experiments of acetone in a phototriggered nitrogen plasma discharge. Two regimes were highlighted: efficient conversion at low concentrations (<100 ppm) and moderate efficiency conversion at higher concentrations (>100 ppm). Those two regimes were clearly delimited as the sum of two exponential curves occurring at respectively low and high concentrations. Many byproducts were detected; in particular, HCN presented a significantly high yield. Nitrile compounds (acetonitrile, propionitrile, ...) are formed as well. To a lower extent, ketene, acetaldehyde, and formaldehyde are observed. The association of the high-resolution mass spectrometer to the plasma reactor will allow further insights into the plasma chemistry and comparison to modelization.

15.
Chemistry ; 15(33): 8185-95, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19603434

RESUMO

Anion-pi interactions between a pi-acidic aromatic system and an anion are gaining increasing recognition in chemistry and biology. Herein, the binding features of an electron-deficient aromatic system (1,3,5-trinitrobenzene (TNB)) and selected anions (OH-, Br-, and I-) are examined in the gas phase by using the combined information derived from collision-induced dissociation experiments at variable energy, infrared multiple-photon dissociation spectroscopy, and quantum chemical calculations. We provide spectroscopic evidence for two different structural motifs of anion-arene complexes depending on the nature of the anion. The TNB-OR- complexes (R=H, or alkyl groups which were studied earlier) adopt an anionic sigma-complex structure whereby RO- attacks the aromatic ring with covalent bond formation, and develops a tetrahedral ring carbon bound to H and OR. The halide complexes rather conform to a structure in which the TNB moiety is hardly altered, and the halogen is placed on an unsubstituted carbon atom over the periphery of the ring at a C-X distance that is appreciably longer than a typical covalent bond length. The ensuing structural motif, previously characterized in the solid state and named weak sigma interaction, is now confirmed by an IR spectroscopic assay in the gas phase, in which the sampled species are unperturbed by crystal packing or solvation effects.


Assuntos
Ânions/química , Trinitrobenzenos/química , Elétrons , Modelos Moleculares , Espectrofotometria Infravermelho
16.
Chemphyschem ; 10(3): 520-2, 2009 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-19173268

RESUMO

An anti trihydroxycarbenium ion is revealed to be the gas-phase structure of protonated carbonic acid by IR multiple-photon dissociation spectroscopy (see picture for calculated structure and comparison of experimental and computed spectra). Deprotonation yields anti-H(2)CO(3) with a nominal gas-phase basicity of 724 kJ mol(-1).

17.
J Phys Chem A ; 113(42): 11211-20, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19769328

RESUMO

Experimental simulations of the initial steps of the ion-molecule reactions occurring in the ionosphere of Titan were performed at the synchrotron source Elettra in Italy. The measurements consisted of irradiating gas mixtures with a monochromatic photon beam, from the methane ionization threshold at 12.6 eV, up to and beyond the molecular nitrogen dissociative ionization threshold at 24.3 eV. Three gas mixtures of increasing complexity were used: N(2)/CH(4) (0.96/0.04), N(2)/CH(4)/C(2)H(2) (0.96/0.04/0.001), and N(2)/CH(4)/C(2)H(2)/C(2)H(4) (0.96/0.04/0.001/0.001). The resulting ions were detected with a high-resolution (1 T) FT-ICR mass spectrometer as a function of time and VUV photon energy. In order to interpret the experimental results, a Titan ionospheric model was adapted to the laboratory conditions. This model had previously allowed the identification of the ions detected in the Titan upper atmosphere by the ion neutral mass spectrometer (INMS) onboard the Cassini spacecraft. Comparison between observed and modeled ion densities validates the kinetic model (reactions, rate constants, product branching ratios) for the primary steps of molecular growth. It also reveals differences that we attribute to an intense surface chemistry. This result implies that heterogeneous chemistry on aerosols might efficiently produce HCN and NH(3) in the Titan upper atmosphere.

18.
J Am Chem Soc ; 130(45): 14916-7, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-18937474

RESUMO

In this study, we propose the first spectroscopic structural characterization of c-type ions produced by ECD of a peptide. The structure of c-type ions formed by electron capture dissociation and the overall mechanism leading to their formation are still a question of debate. Depending on the mechanism, c-type ions have been proposed to have either an enol-imine structure (-C(OH)NH) or an amide one (-C(O)-NH2). Since these ions are isomeric, mass spectrometry only cannot discriminate between them, but infrared spectroscopy can bring experimental evidence and help determine which scheme is operative. Using the coupling between a tunable free electron laser and a FT-ICR mass spectrometer, we show that c-type ions have an amide structure, characterized by an IR signature of the C=O stretch at 1731 cm(-1). This result is particularly interesting from the perspective of the elucidation of the ECD mechanism.


Assuntos
Peptídeos/química , Espectrofotometria Infravermelho/métodos , Análise de Fourier , Espectrometria de Massas/métodos , Modelos Moleculares , Fótons
19.
J Mass Spectrom ; 53(4): 336-352, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29271073

RESUMO

The reactivity of a series of commonly used halogenated compounds (trihalomethanes, chlorofluorocarbon, hydrochlorofluorocarbon, fluorocarbons, and hydrofluoroolefin) with hydroxide and oxygen anion is studied in a compact Fourier transform ion cyclotron resonance. O- is formed by dissociative electron attachment to N2 O and HO- by a further ion-molecule reaction with ammonia. Kinetic experiments are performed by increasing duration of introduction of the studied molecule at a constant pressure. Hydroxide anion reactions mainly proceed by proton transfer for all the acidic compounds. However, nucleophilic substitution is observed for chlorinated and brominated compounds. For fluorinated compounds, a specific elimination of a neutral fluorinated alkene is observed in our results in parallel with the proton transfer reaction. Oxygen anion reacts rapidly and extensively with all compounds. Main reaction channels result from nucleophilic substitution, proton transfer, and formal H2+ transfer. We highlight the importance of transfer processes (atom or ion) in the intermediate ion-neutral complex, explaining part of the observed reactivity and formed ions. In this paper, we present the first reactivity study of anions with HFO 1234yf. Finally, the potential of O- and HO- as chemical ionization reagents for trace analysis is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA