Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Pulm Med ; 21(1): 191, 2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092219

RESUMO

BACKGROUND: Long noncoding RNAs contribute to various inflammatory diseases, including sepsis. We explore the role of small nucleolar RNA host gene 16 (SNHG16) in sepsis-mediated acute lung injury (ALI) and inflammation. METHODS: A sepsis-induced ALI rat model was constructed by the cecal ligation and perforation method. The profiles of SNHG16, miR-128-3p, and high-mobility group box 3 (HMGB3) were monitored by quantitative reverse transcription PCR and Western blot. The pathologic changes of lung tissues were evaluated by Hematoxylin-Eosin staining, immunohistochemistry, and dry and wet method. Meanwhile, the pro-inflammatory factors and proteins were determined by ELISA and Western blot. In contrast, a sepsis model in BEAS-2B was induced with lipopolysaccharide (LPS) to verify the effects of SNHG16/miR-128-3p/HMGB3 on lung epithelial cell viability and apoptosis. RESULTS: As a result, SNHG16 and HMGB3 were up-regulated, while miR-128-3p was down-regulated in sepsis-induced ALI both in vivo and in vitro. Inhibiting SNHG16 reduced the apoptosis and inflammation in the sepsis-induced ALI model. Overexpressing SNHG16 promoted LPS-mediated lung epithelial apoptosis and inhibited cell viability and inflammation, while miR-128-3p had the opposite effects. Mechanistically, SNHG16 targeted miR-128-3p and attenuated its expression, while miR-128-3p targeted the 3' untranslated region of HMGB3. CONCLUSIONS: Overall, down-regulating SNHG16 alleviated the sepsis-mediated ALI by regulating miR-128-3p/HMGB3.


Assuntos
Lesão Pulmonar Aguda/genética , Proteína HMGB3/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Sepse/genética , Animais , Apoptose , Sobrevivência Celular , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Regulação para Cima
2.
J Toxicol Sci ; 45(2): 77-86, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32062619

RESUMO

Sepsis-induced acute lung injury (ALI) has high morbidity and mortality rates, and there remains a need for therapeutic methods to improve the outcome of ALI patients. miR-483-5p is an important regulator for the development of various diseases such as sepsis. Nevertheless, it is not known whether miR-483-5p has an effect on sepsis-induced ALI. To explore this issue, this study used cecal ligation and puncture (CLP)-treated mice and lipopolysaccharide (LPS)-treated pulmonary microvascular endothelial cells (PMVECs) cells to simulate the models of sepsis-induced ALI in vivo and in vitro. Pathological and histological changes of lungs from sepsis-induced ALI mice were detected by Hematoxylin-eosin staining. The detection levels of caspase-3, interleukin (IL)-6 and IL-1ß were used to reflect the effect of miR-483-5p on apoptosis and inflammation of sepsis-induced ALI. The detection level of lactate dehydrogenase (LDH) in PMVECs cells was used to reflect the severe extent of sepsis-induced injury. The expression of miR-483-5p in lung tissues of sepsis-induced ALI mice was determined by qRT-PCR. In addition, the interaction of miR-483-5p with PIAS1 was identified and validated by Targetscan website and luciferase reporter assay, respectively. The results showed that miR-483-5p was up-regulated in the lung tissues of sepsis-induced ALI mice. Knockdown of miR-483-5p effectively ameliorated lung injury in mice with sepsis-induced ALI and inhibited inflammation and apoptosis of LPS-treated PMVECs cells. Furthermore, in vitro experiment revealed that PIAS1 was a potential target of miR-483-5p. Moreover, miR-483-5p could suppress PIAS1 expression to aggravate inflammation and apoptosis of LPS-treated PMVECs cells. These findings suggest miR-483-5p is a potential therapeutic and diagnostic biomarker for sepsis-induced ALI and provide a new insight for understanding the molecular mechanism of sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda/etiologia , Expressão Gênica , MicroRNAs/genética , Sepse/complicações , Sepse/genética , Lesão Pulmonar Aguda/terapia , Animais , Células Cultivadas , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Terapia de Alvo Molecular , Proteínas Inibidoras de STAT Ativados , Sepse/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA