Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(1): 127-140, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35999276

RESUMO

Oxytocin, a neuropeptide known for its role in reproduction and socioemotional processes, may hold promise as a therapeutic agent in treating social impairments in patient populations. However, research has yet to uncover precisely how to manipulate this system for clinical benefit. Moreover, inconsistent use of standardized and validated oxytocin measurement methodologies-including the design and study of hormone secretion and biochemical assays-present unresolved challenges. Human studies measuring peripheral (i.e., in plasma, saliva, or urine) or central (i.e., in cerebrospinal fluid) oxytocin concentrations have involved very diverse methods, including the use of different assay techniques, further compounding this problem. In the present review, we describe the scientific value in measuring human endogenous oxytocin concentrations, common issues in biochemical analysis and study design that researchers face when doing so, and our recommendations for improving studies using valid and reliable methodologies.


Assuntos
Neuropeptídeos , Ocitocina , Humanos , Saliva/química , Projetos de Pesquisa , Plasma/química
2.
PLoS Comput Biol ; 15(6): e1007092, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31158265

RESUMO

The ventromedial nucleus of the hypothalamus (VMN) has an important role in diverse behaviours. The common involvement in these of sex steroids, nutritionally-related signals, and emotional inputs from other brain areas, suggests that, at any given time, its output is in one of a discrete number of possible states corresponding to discrete motivational drives. Here we explored how networks of VMN neurons might generate such a decision-making architecture. We began with minimalist assumptions about the intrinsic properties of VMN neurons inferred from electrophysiological recordings of these neurons in rats in vivo, using an integrate-and-fire based model modified to simulate activity-dependent post-spike changes in neuronal excitability. We used a genetic algorithm based method to fit model parameters to the statistical features of spike patterning in each cell. The spike patterns in both recorded cells and model cells were assessed by analysis of interspike interval distributions and of the index of dispersion of firing rate over different binwidths. Simpler patterned cells could be closely matched by single neuron models incorporating a hyperpolarising afterpotential and either a slow afterhyperpolarisation or a depolarising afterpotential, but many others could not. We then constructed network models with the challenge of explaining the more complex patterns. We assumed that neurons of a given type (with heterogeneity introduced by independently random patterns of external input) were mutually interconnected at random by excitatory synaptic connections (with a variable delay and a random chance of failure). Simple network models of one or two cell types were able to explain the more complex patterns. We then explored the information processing features of such networks that might be relevant for a decision-making network. We concluded that rhythm generation (in the slow theta range) and bistability arise as emergent properties of networks of heterogeneous VMN neurons.


Assuntos
Tomada de Decisões/fisiologia , Modelos Neurológicos , Núcleo Hipotalâmico Ventromedial , Algoritmos , Animais , Biologia Computacional , Masculino , Neurônios/citologia , Neurônios/fisiologia , Ratos , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/fisiologia
3.
J Physiol ; 597(14): 3657-3671, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31111496

RESUMO

KEY POINTS: A quantitative model of oxytocin neurones that combines a spiking model, a model of stimulus-secretion coupling and a model of plasma clearance of oxytocin was tested. To test the model, a variety of sources of published data were used that relate either the electrical activity of oxytocin cells or the secretion of oxytocin to experimentally induced changes in plasma osmotic pressure. To use these data to test the model, the experimental challenges involved were computationally simulated. The model predictions closely matched the reported outcomes of the different experiments. ABSTRACT: Magnocellular vasopressin and oxytocin neurones in the rat hypothalamus project to the posterior pituitary, where they secrete their products into the bloodstream. In rodents, both vasopressin and oxytocin magnocellular neurones are osmoresponsive, and their increased spiking activity is mainly a consequence of an increased synaptic input from osmoresponsive neurons in regions adjacent to the anterior wall of the third ventricle. Osmotically stimulated vasopressin secretion promotes antidiuresis while oxytocin secretion promotes natriuresis. In this work we tested a previously published computational model of the spiking and secretion activity of oxytocin cells against published evidence of changes in spiking activity and plasma oxytocin concentration in response to different osmotic challenges. We show that integrating this oxytocin model with a simple model of the osmoresponsive inputs to oxytocin cells achieves a strikingly close match to diverse sources of data. Comparing model predictions with published data using bicuculline to block inhibitory GABA inputs supports the conclusion that inhibitory inputs and excitatory inputs are co-activated by osmotic stimuli. Finally, we studied how the gain of osmotically stimulated oxytocin release changes in the presence of a hypovolaemic stimulus, showing that this is best explained by an inhibition of an osmotically regulated inhibitory drive to the magnocellular neurones.


Assuntos
Neurônios/metabolismo , Osmose/fisiologia , Ocitocina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bicuculina/farmacologia , Simulação por Computador , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Neurônios/efeitos dos fármacos , Osmose/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Pressão Osmótica/fisiologia , Ratos , Núcleo Supraóptico/efeitos dos fármacos , Núcleo Supraóptico/metabolismo , Vasopressinas/efeitos dos fármacos , Vasopressinas/metabolismo
4.
J Physiol ; 595(11): 3497-3514, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28402052

RESUMO

KEY POINTS: A subpopulation of retinal ganglion cells expresses the neuropeptide vasopressin. These retinal ganglion cells project predominately to our biological clock, the suprachiasmatic nucleus (SCN). Light-induced vasopressin release enhances the responses of SCN neurons to light. It also enhances expression of genes involved in photo-entrainment of biological rhythms. ABSTRACT: In all animals, the transition between night and day engages a host of physiological and behavioural rhythms. These rhythms depend not on the rods and cones of the retina, but on retinal ganglion cells (RGCs) that detect the ambient light level in the environment. These project to the suprachiasmatic nucleus (SCN) of the hypothalamus to entrain circadian rhythms that are generated within the SCN. The neuropeptide vasopressin has an important role in this entrainment. Many SCN neurons express vasopressin, and it has been assumed that the role of vasopressin in the SCN reflects the activity of these cells. Here we show that vasopressin is also expressed in many retinal cells that project to the SCN. Light-evoked vasopressin release contributes to the responses of SCN neurons to light, and enhances expression of the immediate early gene c-fos in the SCN, which is involved in photic entrainment of circadian rhythms.


Assuntos
Luz , Células Ganglionares da Retina/metabolismo , Núcleo Supraquiasmático/metabolismo , Vasopressinas/metabolismo , Animais , Ritmo Circadiano , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Núcleo Supraquiasmático/fisiologia
5.
Proc Natl Acad Sci U S A ; 111(36): 13199-204, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25146699

RESUMO

Cerebral edema is a potentially life-threatening illness, but knowledge of its underlying mechanisms is limited. Here we report that hypobaric hypoxia induces rat cerebral edema and neuronal apoptosis and increases the expression of corticotrophin releasing factor (CRF), CRF receptor type 1 (CRFR1), aquaporin-4 (AQP4), and endothelin-1 (ET-1) in the cortex. These effects, except for the increased expression of CRF itself, could all be blocked by pretreatment with an antagonist of the CRF receptor CRFR1. We also show that, in cultured primary astrocytes: (i) both CRFR1 and AQP4 are expressed; (ii) exogenous CRF, acting through CRFR1, triggers signaling of cAMP/PKA, intracellular Ca(2+), and PKCε; and (iii) the up-regulated cAMP/PKA signaling contributes to the phosphorylation and expression of AQP4 to enhance water influx into astrocytes and produces an up-regulation of ET-1 expression. Finally, using CHO cells transfected with CRFR1(+) and AQP4(+), we show that transfected CRFR1(+) contributes to edema via transfected AQP4(+). In conclusion, hypoxia triggers cortical release of CRF, which acts on CRFR1 to trigger signaling of cAMP/PKA in cortical astrocytes, leading to activation of AQP4 and cerebral edema.


Assuntos
Aquaporina 4/metabolismo , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Hipóxia/complicações , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Animais , Apoptose/genética , Aquaporina 4/genética , Astrócitos/metabolismo , Edema Encefálico/patologia , Células CHO , Hormônio Liberador da Corticotropina/metabolismo , Cricetinae , Cricetulus , Endotelina-1/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Ratos Sprague-Dawley , Transdução de Sinais , Transfecção , Regulação para Cima/genética
6.
J Physiol ; 594(13): 3629-50, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27061101

RESUMO

KEY POINTS: Light-responsive neurones in the rat suprachiasmatic nucleus discharge with a harmonic distribution of interspike intervals, whereas unresponsive neurones seldom do. This harmonic patterning has a fundamental frequency of close to 30 Hz, and is the same in light-on cells as in light-off cells, and is unaffected by exposure to light. Light-on cells are more active than light-off cells in both subjective day and subjective night, and both light-on cells and light-off cells respond more strongly to changes in light intensity during the subjective night than during the subjective day. Paired recordings indicate that the discharge of adjacent light-responsive cells is very tightly synchronized. The gap junction inhibitor carbenoxolone increases the spontaneous activity of suprachiasmatic nucleus neurones but does not block the harmonic discharge patterning. ABSTRACT: The suprachiasmatic nucleus (SCN) of the hypothalamus has an essential role in orchestrating circadian rhythms of behaviour and physiology. In the present study, we recorded from single SCN neurons in urethane-anaesthetized rats, categorized them by the statistical features of their electrical activity and by their responses to light, and examined how activity in the light phase differs from activity in the dark phase. We classified cells as light-on cells or light-off cells according to how their firing rate changed in acute response to light, or as non-responsive cells. In both sets of light-responsive neurons, responses to light were stronger at subjective night than in subjective day. Neuronal firing patterns were analysed by constructing hazard functions from interspike interval data. For most light-responsive cells, the hazard functions showed a multimodal distribution, with a harmonic sequence of modes, indicating that spike activity was driven by an oscillatory input with a fundamental frequency of close to 30 Hz; this harmonic pattern was rarely seen in non-responsive SCN cells. The frequency of the rhythm was the same in light-on cells as in light-off cells, was the same in subjective day as at subjective night, and was unaffected by exposure to light. Paired recordings indicated that the discharge of adjacent light-responsive neurons was very tightly synchronized, consistent with electrical coupling.


Assuntos
Ritmo Circadiano/fisiologia , Luz , Neurônios/efeitos da radiação , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/fisiologia , Animais , Carbenoxolona/farmacologia , Masculino , Neurônios/fisiologia , Ratos Sprague-Dawley
7.
Nature ; 464(7287): 413-7, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20182426

RESUMO

Many peptides, when released as chemical messengers within the brain, have powerful influences on complex behaviours. Most strikingly, vasopressin and oxytocin, once thought of as circulating hormones whose actions were confined to peripheral organs, are now known to be released in the brain, where they have fundamentally important roles in social behaviours. In humans, disruptions of these peptide systems have been linked to several neurobehavioural disorders, including Prader-Willi syndrome, affective disorders and obsessive-compulsive disorder, and polymorphisms of V1a vasopressin receptor have been linked to autism. Here we report that the rat olfactory bulb contains a large population of interneurons which express vasopressin, that blocking the actions of vasopressin in the olfactory bulb impairs the social recognition abilities of rats and that vasopressin agonists and antagonists can modulate the processing of information by olfactory bulb neurons. The findings indicate that social information is processed in part by a vasopressin system intrinsic to the olfactory system.


Assuntos
Bulbo Olfatório/metabolismo , Reconhecimento Psicológico/fisiologia , Comportamento Social , Vasopressinas/metabolismo , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Bulbo Olfatório/citologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Vasopressinas/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Vasopressinas/antagonistas & inibidores
8.
PLoS Comput Biol ; 9(8): e1003187, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23966850

RESUMO

Vasopressin neurons generate distinctive phasic patterned spike activity in response to elevated extracellular osmotic pressure. These spikes are generated in the cell body and are conducted down the axon to the axonal terminals where they trigger Ca²âº entry and subsequent exocytosis of hormone-containing vesicles and secretion of vasopressin. This mechanism is highly non-linear, subject to both frequency facilitation and fatigue, such that the rate of secretion depends on both the rate and patterning of the spike activity. Here we used computational modelling to investigate this relationship and how it shapes the overall response of the neuronal population. We generated a concise single compartment model of the secretion mechanism, fitted to experimentally observed profiles of facilitation and fatigue, and based on representations of the hypothesised underlying mechanisms. These mechanisms include spike broadening, Ca²âº channel inactivation, a Ca²âº sensitive K⁺ current, and releasable and reserve pools of vesicles. We coupled the secretion model to an existing integrate-and-fire based spiking model in order to study the secretion response to increasing synaptic input, and compared phasic and non-phasic spiking models to assess the functional value of the phasic spiking pattern. The secretory response of individual phasic cells is very non-linear, but the response of a heterogeneous population of phasic cells shows a much more linear response to increasing input, matching the linear response we observe experimentally, though in this respect, phasic cells have no apparent advantage over non-phasic cells. Another challenge for the cells is maintaining this linear response during chronic stimulation, and we show that the activity-dependent fatigue mechanism has a potentially useful function in helping to maintain secretion despite depletion of stores. Without this mechanism, secretion in response to a steady stimulus declines as the stored content declines.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Vasopressinas/metabolismo , Animais , Cálcio/metabolismo , Vesículas Citoplasmáticas , Neurônios/metabolismo , Ratos , Transdução de Sinais , Núcleo Supraóptico/citologia
9.
Psychoneuroendocrinology ; 161: 106951, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38194845

RESUMO

Oxytocin is a pleiotropic neuropeptide that plays roles in biological processes ranging from birth, lactation, and social bonding to immune function, cardiovascular repair, and regulation of appetite. Although measurements of endogenous oxytocin concentrations have been performed for more than 50 years, the ability to measure oxytocin accurately poses notable challenges. One potential solution for overcoming these challenges involves measurement of oxytocin's carrier molecule - neurophysin I (NP-1) - as a surrogate biomarker. NP-1 is secreted in equimolar concentrations with oxytocin but has a longer half-life, circulates in higher concentrations, and can be measured using a sandwich immunoassay. We report experiments that 1) analytically validate a commercially available NP-1 sandwich immunoassay for use with human plasma and urine samples, 2) confirm the specificity of this assay, based on detection of NP-1 in plasma from wild-type but not oxytocin knockout mice, 3) demonstrate that NP-1 concentrations are markedly elevated in late pregnancy, consistent with studies showing substantial increases in plasma oxytocin throughout gestation, and 4) establish strong correlation between NP-1 and plasma oxytocin concentrations when oxytocin is measured in extracted (but not non-extracted) plasma. The NP-1 assay used in this study has strong analytical properties, does not require time-intensive extraction protocols, and the assay itself can be completed in < 2 h (compared to 16-24 h for a competitive oxytocin immunoassay). Our findings suggest that much like copeptin has become a useful surrogate biomarker in studies of vasopressin, measurements of NP-1 have similar potential to advance oxytocin research.


Assuntos
Neurofisinas , Ocitocina , Camundongos , Animais , Feminino , Gravidez , Humanos , Ocitocina/metabolismo , Neurofisinas/metabolismo , Lactação , Imunoensaio , Bioensaio
10.
PLoS Comput Biol ; 8(10): e1002740, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23093929

RESUMO

Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP) generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response. These findings show large differences in information coding between the populations, and apparent functional advantages of asynchronous phasic firing.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Núcleo Supraóptico/citologia , Vasopressinas/fisiologia , Animais , Simulação por Computador , Pressão Osmótica , Ratos , Sinapses
11.
J Neuroendocrinol ; 35(6): e13303, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37316906

RESUMO

In the present experiments, we tested the conclusion from previous electrophysiological experiments that gavage of sweet food and systemically applied insulin both stimulate oxytocin secretion. To do so, we measured oxytocin secretion from urethane-anaesthetised male rats, and demonstrated a significant increase in secretion in response to gavage of sweetened condensed milk but not isocaloric cream, and a significant increase in response to intravenous injection of insulin. We compared the measurements made in response to sweetened condensed milk with the predictions from a computational model, which we used to predict plasma concentrations of oxytocin from the published electrophysiological responses of oxytocin cells. The prediction from the computational model was very closely aligned to the levels of oxytocin measured in rats in response to gavage.


Assuntos
Insulinas , Ocitocina , Ratos , Masculino , Animais , Ocitocina/fisiologia , Núcleo Supraóptico/fisiologia , Uretana , Simulação por Computador
12.
Biophys J ; 103(9): 2021-32, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23199930

RESUMO

Mathematical models are increasingly important in biology, and testability is becoming a critical issue. One limitation is that one model simulation tests a parameter set representing one instance of the biological counterpart, whereas biological systems are heterogeneous in their properties and behavior, and a model often is fitted to represent an ideal average. This is also true for models of a cell's electrical activity; even within a narrowly defined population there can be considerable variation in electrophysiological phenotype. Here, we describe a computational experimental approach for parameterizing a model of the electrical activity of a cell in real time. We combine the inexpensive parallel computational power of a programmable graphics processing unit with the flexibility of the dynamic clamp method. The approach involves 1), recording a cell's electrical activity, 2), parameterizing a model to the recording, 3), generating predictions, and 4), testing the predictions on the same cell used for the calibration. We demonstrate the experimental feasibility of our approach using a cell line (GH4C1). These cells are electrically active, and they display tonic spiking or bursting. We use our approach to predict parameter changes that can convert one pattern to the other.


Assuntos
Potenciais da Membrana , Modelos Biológicos , Animais , Calibragem , Linhagem Celular , Técnicas de Patch-Clamp , Ratos
13.
Handb Exp Pharmacol ; (209): 131-58, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22249813

RESUMO

The pleasure derived from eating may feel like a simple emotion, but the decision to eat, and perhaps more importantly what to eat, involves central pathways linking energy homeostasis and reward and their regulation by metabolic and endocrine factors. Evidence is mounting that modulation of the hedonic aspects of energy balance is under the control of peripheral neuropeptides conventionally associated with homeostatic appetite control. Here, we describe the significance of reward in feeding, the neural substrates underlying the reward pathway and their modification by peptides released into the circulation from peripheral tissues.


Assuntos
Encéfalo/metabolismo , Ingestão de Alimentos , Comportamento Alimentar , Neuropeptídeos/metabolismo , Sistema Nervoso Periférico/metabolismo , Recompensa , Transdução de Sinais , Animais , Metabolismo Energético , Homeostase , Humanos , Vias Neurais/metabolismo
14.
Philos Trans R Soc Lond B Biol Sci ; 377(1858): 20210055, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35858110

RESUMO

In this paper, we analyse the claim that oxytocin is a 'social neuropeptide'. This claim originated from evidence that oxytocin was instrumental in the initiation of maternal behaviour and it was extended to become the claim that oxytocin has a key role in promoting social interactions between individuals. We begin by considering the structure of the scientific literature on this topic, identifying closely interconnected clusters of papers on particular themes. We then analyse this claim by considering evidence of four types as generated by these clusters: (i) mechanistic studies in animal models, designed to understand the pathways involved in the behavioural effects of centrally administered oxytocin; (ii) evidence from observational studies indicating an association between oxytocin signalling pathways and social behaviour; (iii) evidence from intervention studies, mainly involving intranasal oxytocin administration; and (iv) evidence from translational studies of patients with disorders of social behaviour. We then critically analyse the most highly cited papers in each segment of the evidence; we conclude that, if these represent the best evidence, then the evidence for the claim is weak. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.


Assuntos
Ocitocina , Comportamento Social , Administração Intranasal , Animais , Cognição , Ocitocina/metabolismo
15.
Cell Metab ; 4(4): 313-21, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17011504

RESUMO

We trained rats to a regime of scheduled feeding, in which food was available for only 2 hr each day. After 10 days, rats were euthanized at defined times relative to food availability, and their brains were analyzed to map Fos expression in neuronal populations to test the hypothesis that some populations are activated by hunger whereas others are activated by satiety signals. Fos expression accompanied feeding in several hypothalamic and brainstem nuclei. Food ingestion was critical for Fos expression in noradrenergic and non-noradrenergic cells in the nucleus tractus solitarii and area postrema and in the supraoptic nucleus, as well as in melanocortin-containing cells of the arcuate nucleus. However, anticipation of food alone activated other neurons in the arcuate nucleus and in the lateral and ventromedial hypothalamus, including orexin neurons. Thus orexigenic populations are strongly and rapidly activated at the onset of food presentation, followed rapidly by activity in anorexigenic populations when food is ingested.


Assuntos
Tronco Encefálico/metabolismo , Comportamento Alimentar/fisiologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Animais , Tronco Encefálico/ultraestrutura , Ingestão de Alimentos , Hipotálamo/ultraestrutura , Imuno-Histoquímica , Masculino , Neurônios/ultraestrutura , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/genética , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
16.
J Clin Invest ; 118(12): 4014-24, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19033670

RESUMO

Food intake is regulated by a network of signals that emanate from the gut and the brainstem. The peripheral satiety signal cholecystokinin is released from the gut following food intake and acts on fibers of the vagus nerve, which project to the brainstem and activate neurons that modulate both gastrointestinal function and appetite. In this study, we found that neurons in the nucleus tractus solitarii of the brainstem that express prolactin-releasing peptide (PrRP) are activated rapidly by food ingestion. To further examine the role of this peptide in the control of food intake and energy metabolism, we generated PrRP-deficient mice and found that they displayed late-onset obesity and adiposity, phenotypes that reflected an increase in meal size, hyperphagia, and attenuated responses to the anorexigenic signals cholecystokinin and leptin. Hypothalamic expression of 6 other appetite-regulating peptides remained unchanged in the PrRP-deficient mice. Blockade of endogenous PrRP signaling in WT rats by central injection of PrRP-specific mAb resulted in an increase in food intake, as reflected by an increase in meal size. These data suggest that PrRP relays satiety signals within the brain and that selective disturbance of this system can result in obesity and associated metabolic disorders.


Assuntos
Regulação do Apetite/fisiologia , Neurônios/metabolismo , Prolactina/metabolismo , Transdução de Sinais/fisiologia , Núcleo Solitário/metabolismo , Adiposidade/efeitos dos fármacos , Adiposidade/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Regulação do Apetite/efeitos dos fármacos , Colecistocinina/genética , Colecistocinina/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Hiperfagia/genética , Hiperfagia/metabolismo , Mucosa Intestinal/metabolismo , Leptina/genética , Leptina/metabolismo , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Fenótipo , Prolactina/antagonistas & inibidores , Prolactina/genética , Transdução de Sinais/efeitos dos fármacos
17.
J Neuroendocrinol ; 33(11): e13014, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34328668

RESUMO

Our understanding of the oxytocin system has been built over the last 70 years by the work of hundreds of scientists, reported in thousands of papers. Here, we construct a map to that literature, using citation network analysis in conjunction with bibliometrics. The map identifies ten major 'clusters' of papers on oxytocin that differ in their particular research focus and that densely cite papers from the same cluster. We identify highly cited papers within each cluster and in each decade, not because citations are a good indicator of quality, but as a guide to recognising what questions were of wide interest at particular times. The clusters differ in their temporal profiles and bibliometric features; here, we attempt to understand the origins of these differences.


Assuntos
Bibliometria , Ocitocina
18.
Eur J Neurosci ; 31(6): 1127-35, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20377625

RESUMO

The peptide cholecystokinin (CCK) is a short-term satiety signal released from the gastrointestinal tract during food intake. From the periphery, CCK signalling travels via the vagus nerve to reach the brainstem from which it is relayed higher into the brain. The hypothalamus is a key integrator of appetite-related stimuli and the ventromedial nucleus of the hypothalamus (VMN) is thought to have an important role in the regulation of satiety. We investigated the effect of intravenous injections of CCK on the spontaneous firing activity of single VMN neurons in urethane-anaesthetised rats in vivo. We found that the predominant effect of CCK on the electrical activity in the VMN is inhibitory. We analysed the responses to CCK according to electrophysiologically distinct subpopulations of VMN neurons and found that four of these VMN subpopulations were inhibited by CCK, while five were not significantly affected. Finally, CCK-induced inhibitory response in VMN neurons was not altered by pre-administration of intravenous leptin.


Assuntos
Colagogos e Coleréticos/farmacologia , Colecistocinina/farmacologia , Neurônios/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Leptina/farmacologia , Masculino , Inibição Neural/efeitos dos fármacos , Neurônios/classificação , Ratos , Ratos Sprague-Dawley , Núcleo Hipotalâmico Ventromedial/citologia
19.
J Neuroendocrinol ; 32(4): e12841, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180284

RESUMO

Oxytocin neurones are involved in the regulation of energy balance through diverse central and peripheral actions and, in rats, they are potently activated by gavage of sweet substances. Here, we test the hypothesis that this activation is mediated by the central actions of insulin. We show that, in urethane-anaesthetised rats, oxytocin cells in the supraoptic nucleus show prolonged activation after i.v. injections of insulin, and that this response is greater in fasted rats than in non-fasted rats. Vasopressin cells are also activated, although less consistently. We also show that this activation of oxytocin cells is independent of changes in plasma glucose concentration, and is completely blocked by central (i.c.v.) administration of an insulin receptor antagonist. Finally, we replicate the previously published finding that oxytocin cells are activated by gavage of sweetened condensed milk, and show that this response too is completely blocked by central administration of an insulin receptor antagonist. We conclude that the response of oxytocin cells to gavage of sweetened condensed milk is mediated by the central actions of insulin.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Neurônios/efeitos dos fármacos , Ocitocina/metabolismo , Núcleo Supraóptico/efeitos dos fármacos , Vasopressinas/metabolismo , Animais , Jejum/metabolismo , Neurônios/metabolismo , Ratos , Núcleo Supraóptico/metabolismo
20.
Nat Neurosci ; 23(9): 1125-1137, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719563

RESUMO

Oxytocin (OT) is a great facilitator of social life but, although its effects on socially relevant brain regions have been extensively studied, OT neuron activity during actual social interactions remains unexplored. Most OT neurons are magnocellular neurons, which simultaneously project to the pituitary and forebrain regions involved in social behaviors. In the present study, we show that a much smaller population of OT neurons, parvocellular neurons that do not project to the pituitary but synapse onto magnocellular neurons, is preferentially activated by somatosensory stimuli. This activation is transmitted to the larger population of magnocellular neurons, which consequently show coordinated increases in their activity during social interactions between virgin female rats. Selectively activating these parvocellular neurons promotes social motivation, whereas inhibiting them reduces social interactions. Thus, parvocellular OT neurons receive particular inputs to control social behavior by coordinating the responses of the much larger population of magnocellular OT neurons.


Assuntos
Comportamento Animal/fisiologia , Neurônios/fisiologia , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Comportamento Social , Animais , Feminino , Ratos , Ratos Wistar , Tato , Percepção do Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA