Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 29(2): 292-309, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28100707

RESUMO

Brassinosteroids (BRs) are plant-specific steroid hormones that control plant growth and development. Recent studies have identified key components of the BR signaling pathway in Arabidopsis thaliana and in rice (Oryza sativa); however, the mechanism of BR signaling in rice, especially downstream of GSK3/SHAGGY-like kinase (GSK2), remains unclear. Here, we identified a BR-insensitive rice mutant, reduced leaf angle1 (rla1), and cloned the corresponding gene. RLA1 was identical to the previously reported SMALL ORGAN SIZE1 (SMOS1), which was cloned from another allele. RLA1/SMOS1 encodes a transcription factor with an APETALA2 DNA binding domain. Genetic analysis indicated that RLA1/SMOS1 functions as a positive regulator in the BR signaling pathway and is required for the function of BRASSINAZOLE-RESISTANT1 (OsBZR1). In addition, RLA1/SMOS1 can interact with OsBZR1 to enhance its transcriptional activity. GSK2 can interact with and phosphorylate RLA1/SMOS1 to reduce its stability. These results demonstrate that RLA1/SMOS1 acts as an integrator of the transcriptional complex directly downstream of GSK2 and plays an essential role in BR signaling and plant development in rice.


Assuntos
Brassinosteroides/metabolismo , Oryza/metabolismo , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Sítios de Ligação , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(37): 10418-23, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27562168

RESUMO

Glycogen synthase kinase 3 (GSK3)-like kinases play important roles in brassinosteroid (BR), abscisic acid, and auxin signaling to regulate many aspects of plant development and stress responses. The Arabidopsis thaliana GSK3-like kinase BR-INSENSITIVE 2 (BIN2) acts as a key negative regulator in the BR signaling pathway, but the mechanisms regulating BIN2 function remain unclear. Here we report that the histone deacetylase HDA6 can interact with and deacetylate BIN2 to repress its kinase activity. The hda6 mutant showed a BR-repressed phenotype in the dark and was less sensitive to BR biosynthesis inhibitors. Genetic analysis indicated that HDA6 regulates BR signaling through BIN2. Furthermore, we identified K189 of BIN2 as an acetylated site, which can be deacetylated by HDA6 to influence BIN2 activity. Glucose can affect the acetylation level of BIN2 in plants, indicating a connection to cellular energy status. These findings provide significant insights into the regulation of GSK3-like kinases in plant growth and development.


Assuntos
Proteínas de Arabidopsis/genética , Brassinosteroides/biossíntese , Histona Desacetilases/genética , Proteínas Mutantes/genética , Proteínas Quinases/genética , Acetilação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Histona Desacetilases/metabolismo , Proteínas Mutantes/metabolismo , Desenvolvimento Vegetal/genética , Ligação Proteica , Proteínas Quinases/metabolismo , Transdução de Sinais
3.
J Plant Res ; 130(2): 349-363, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28004282

RESUMO

Members of the HSP70 family function as molecular chaperones to maintain cellular homeostasis and help plants cope with environmental stimuli. However, due to functional redundancy and lack of effective chemical inhibitors, our knowledge of functions of individual HSP70s has remained limited. Here, we confirmed a subclass of HSP70s, including HSP70-1, -2, -3, -4, and -5, localized to the cytosol and nucleus in Arabidopsis thaliana. Histochemical analyses of promoter:GUS reporter lines showed that HSP70-1, -2, -3, and -4 genes were widely expressed, but HSP70-5 was not. In addition, individual HSP70 showed not only similar but also distinct transcriptions when treated by different abiotic stresses and phytohormones. No apparent phenotype was observed when individual HSP70 genes were overexpressed or knocked-out/down, but the double mutant hsp70-1 hsp70-4 and triple mutant hsp70-2 hsp70-4 hsp70-5 plants exhibited developmental phenotypes with shortened specific growth periods, curly and round leaves, twisted petioles, thin stems, and short siliques. Moreover, both mutants were hypersensitive to heat, cold, high glucose, salt and osmotic stress, but hyposensitive to abscisic acid. Genes related to flowering, and the cytokinin, brassinosteroid, and abscisic acid signaling pathways were differentially expressed in both mutants. Our studies suggest that, the individual HSP70 possibly performs both redundant and specific functions with the other members in the cytosolic/nuclear HSP70 subclass, and apart from enabling plants to cope with abiotic stresses, this subclass of cytosolic/nuclear HSP70 proteins also participates in diverse developmental processes and signaling pathways.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP70/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Reguladores de Crescimento de Plantas , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA