Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Cell ; 82(16): 2952-2966.e6, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35839782

RESUMO

Cellular homeostasis requires the coordination of several machineries concurrently engaged in the DNA. Wide-spread transcription can interfere with other processes, and transcription-replication conflicts (TRCs) threaten genome stability. The conserved Sen1 helicase not only terminates non-coding transcription but also interacts with the replisome and reportedly resolves genotoxic R-loops. Sen1 prevents genomic instability, but how this relates to its molecular functions remains unclear. We generated high-resolution, genome-wide maps of transcription-dependent conflicts and R-loops using a Sen1 mutant that has lost interaction with the replisome but is termination proficient. We show that, under physiological conditions, Sen1 removes RNA polymerase II at TRCs within genes and the rDNA and at sites of transcription-transcription conflicts, thus qualifying as a "key regulator of conflicts." We demonstrate that genomic stability is affected by Sen1 mutation only when in addition to its role at the replisome, the termination of non-coding transcription or R-loop removal are additionally compromised.


Assuntos
Proteínas de Saccharomyces cerevisiae , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA/genética , Instabilidade Genômica , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
2.
Mol Cell ; 81(1): 183-197.e6, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33278361

RESUMO

Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator. MRX restricts transcription of coding and noncoding DNA by a mechanism that does not require the nuclease activity of Mre11. MRX is required to tether transcriptionally active loci to the nuclear pore complex (NPC), and it also promotes large-scale gene-NPC interactions. Moreover, MRX-mediated chromatin anchoring to the NPC contributes to chromosome folding and helps to control gene expression. Together, these findings indicate that MRX has a role in transcription and chromosome organization that is distinct from its known function in DNA repair.


Assuntos
Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Cell ; 77(2): 395-410.e3, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31759824

RESUMO

The recovery of stalled replication forks depends on the controlled resection of nascent DNA and on the loading of cohesin. These processes operate in the context of nascent chromatin, but the impact of nucleosome structure on a fork restart remains poorly understood. Here, we show that the Mre11-Rad50-Xrs2 (MRX) complex acts together with the chromatin modifiers Gcn5 and Set1 and the histone remodelers RSC, Chd1, and Isw1 to promote chromatin remodeling at stalled forks. Increased chromatin accessibility facilitates the resection of nascent DNA by the Exo1 nuclease and the Sgs1 and Chl1 DNA helicases. Importantly, increased ssDNA promotes the recruitment of cohesin to arrested forks in a Scc2-Scc4-dependent manner. Altogether, these results indicate that MRX cooperates with chromatin modifiers to orchestrate the action of remodelers, nucleases, and DNA helicases, promoting the resection of nascent DNA and the loading of cohesin, two key processes involved in the recovery of arrested forks.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Replicação do DNA/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Nucleossomos/genética , RecQ Helicases/genética , Saccharomyces cerevisiae/genética , Coesinas
4.
Mol Cell ; 78(3): 396-410.e4, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32169162

RESUMO

The Mec1 and Rad53 kinases play a central role during acute replication stress in budding yeast. They are also essential for viability in normal growth conditions, but the signal that activates the Mec1-Rad53 pathway in the absence of exogenous insults is currently unknown. Here, we show that this pathway is active at the onset of normal S phase because deoxyribonucleotide triphosphate (dNTP) levels present in G1 phase may not be sufficient to support processive DNA synthesis and impede DNA replication. This activation can be suppressed experimentally by increasing dNTP levels in G1 phase. Moreover, we show that unchallenged cells entering S phase in the absence of Rad53 undergo irreversible fork collapse and mitotic catastrophe. Together, these data indicate that cells use suboptimal dNTP pools to detect the onset of DNA replication and activate the Mec1-Rad53 pathway, which in turn maintains functional forks and triggers dNTP synthesis, allowing the completion of DNA replication.


Assuntos
Replicação do DNA/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Desoxirribonucleotídeos/genética , Desoxirribonucleotídeos/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitose , Proteínas Serina-Treonina Quinases/genética , Origem de Replicação , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética
5.
EMBO J ; 42(23): e113104, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855233

RESUMO

R-loops represent a major source of replication stress, but the mechanism by which these structures impede fork progression remains unclear. To address this question, we monitored fork progression, arrest, and restart in Saccharomyces cerevisiae cells lacking RNase H1 and H2, two enzymes responsible for degrading RNA:DNA hybrids. We found that while RNase H-deficient cells could replicate their chromosomes normally under unchallenged growth conditions, their replication was impaired when exposed to hydroxyurea (HU) or methyl methanesulfonate (MMS). Treated cells exhibited increased levels of RNA:DNA hybrids at stalled forks and were unable to generate RPA-coated single-stranded (ssDNA), an important postreplicative intermediate in resuming replication. Similar impairments in nascent DNA resection and ssDNA formation at HU-arrested forks were observed in human cells lacking RNase H2. However, fork resection was fully restored by addition of triptolide, an inhibitor of transcription that induces RNA polymerase degradation. Taken together, these data indicate that RNA:DNA hybrids not only act as barriers to replication forks, but also interfere with postreplicative fork repair mechanisms if not promptly degraded by RNase H.


Assuntos
Replicação do DNA , RNA , Humanos , RNA/genética , Ribonucleases/genética , DNA/metabolismo , Hidroxiureia/farmacologia , Ribonuclease H/genética , Ribonuclease H/metabolismo
6.
Genes Dev ; 31(23-24): 2405-2415, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29330352

RESUMO

Initiation of eukaryotic chromosome replication follows a spatiotemporal program. The current model suggests that replication origins compete for a limited pool of initiation factors. However, it remains to be answered how these limiting factors are preferentially recruited to early origins. Here, we report that Dbf4 is enriched at early origins through its interaction with forkhead transcription factors Fkh1 and Fkh2. This interaction is mediated by the Dbf4 C terminus and was successfully reconstituted in vitro. An interaction-defective mutant, dbf4ΔC, phenocopies fkh alleles in terms of origin firing. Remarkably, genome-wide replication profiles reveal that the direct fusion of the DNA-binding domain (DBD) of Fkh1 to Dbf4 restores the Fkh-dependent origin firing but interferes specifically with the pericentromeric origin activation. Furthermore, Dbf4 interacts directly with Sld3 and promotes the recruitment of downstream limiting factors. These data suggest that Fkh1 targets Dbf4 to a subset of noncentromeric origins to promote early replication in a manner that is reminiscent of the recruitment of Dbf4 to pericentromeric origins by Ctf19.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Origem de Replicação/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico/genética , Mutação , Proteínas Nucleares/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Origem de Replicação/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Mol Cell ; 63(3): 371-84, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27397686

RESUMO

DNA replication during S phase is accompanied by establishment of sister chromatid cohesion to ensure faithful chromosome segregation. The Eco1 acetyltransferase, helped by factors including Ctf4 and Chl1, concomitantly acetylates the chromosomal cohesin complex to stabilize its cohesive links. Here we show that Ctf4 recruits the Chl1 helicase to the replisome via a conserved interaction motif that Chl1 shares with GINS and polymerase α. We visualize recruitment by EM analysis of a reconstituted Chl1-Ctf4-GINS assembly. The Chl1 helicase facilitates replication fork progression under conditions of nucleotide depletion, partly independently of Ctf4 interaction. Conversely, Ctf4 interaction, but not helicase activity, is required for Chl1's role in sister chromatid cohesion. A physical interaction between Chl1 and the cohesin complex during S phase suggests that Chl1 contacts cohesin to facilitate its acetylation. Our results reveal how Ctf4 forms a replisomal interaction hub that coordinates replication fork progression and sister chromatid cohesion establishment.


Assuntos
Cromátides/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/enzimologia , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Acetiltransferases/metabolismo , Acilação , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/ultraestrutura , Cromossomos Fúngicos/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Complexos Multiproteicos , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Relação Estrutura-Atividade , Fatores de Tempo , Coesinas
8.
Mol Cell ; 60(6): 835-46, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26698660

RESUMO

The essential functions of the conserved Smc5/6 complex remain elusive. To uncover its roles in genome maintenance, we established Saccharomyces cerevisiae cell-cycle-regulated alleles that enable restriction of Smc5/6 components to S or G2/M. Unexpectedly, the essential functions of Smc5/6 segregated fully and selectively to G2/M. Genetic screens that became possible with generated alleles identified processes that crucially rely on Smc5/6 specifically in G2/M: metabolism of DNA recombination structures triggered by endogenous replication stress, and replication through natural pausing sites located in late-replicating regions. In the first process, Smc5/6 modulates remodeling of recombination intermediates, cooperating with dissolution activities. In the second, Smc5/6 prevents chromosome fragility and toxic recombination instigated by prolonged pausing and the fork protection complex, Tof1-Csm3. Our results thus dissect Smc5/6 essential roles and reveal that combined defects in DNA damage tolerance and pausing site-replication cause recombination-mediated DNA lesions, which we propose to drive developmental and cancer-prone disorders.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Genes Essenciais , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Testes Genéticos , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
EMBO J ; 37(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30158111

RESUMO

The S-phase checkpoint maintains the integrity of the genome in response to DNA replication stress. In budding yeast, this pathway is initiated by Mec1 and is amplified through the activation of Rad53 by two checkpoint mediators: Mrc1 promotes Rad53 activation at stalled forks, and Rad9 is a general mediator of the DNA damage response. Here, we have investigated the interplay between Mrc1 and Rad9 in response to DNA damage and found that they control DNA replication through two distinct but complementary mechanisms. Mrc1 rapidly activates Rad53 at stalled forks and represses late-firing origins but is unable to maintain this repression over time. Rad9 takes over Mrc1 to maintain a continuous checkpoint signaling. Importantly, the Rad9-mediated activation of Rad53 slows down fork progression, supporting the view that the S-phase checkpoint controls both the initiation and the elongation of DNA replication in response to DNA damage. Together, these data indicate that Mrc1 and Rad9 play distinct functions that are important to ensure an optimal completion of S phase under replication stress conditions.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Replicação do DNA , DNA Fúngico/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , DNA Fúngico/genética , Fase S/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Mol Cell ; 54(4): 691-7, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24856221

RESUMO

In S. cerevisiae, replication timing is controlled by epigenetic mechanisms restricting the accessibility of origins to limiting initiation factors. About 30% of these origins are located within repetitive DNA sequences such as the ribosomal DNA (rDNA) array, but their regulation is poorly understood. Here, we have investigated how histone deacetylases (HDACs) control the replication program in budding yeast. This analysis revealed that two HDACs, Rpd3 and Sir2, control replication timing in an opposite manner. Whereas Rpd3 delays initiation at late origins, Sir2 is required for the timely activation of early origins. Moreover, Sir2 represses initiation at rDNA origins, whereas Rpd3 counteracts this effect. Remarkably, deletion of SIR2 restored normal replication in rpd3Δ cells by reactivating rDNA origins. Together, these data indicate that HDACs control the replication timing program in budding yeast by modulating the ability of repeated origins to compete with single-copy origins for limiting initiation factors.


Assuntos
Replicação do DNA , DNA Ribossômico/metabolismo , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Ribossômico/genética , Epigênese Genética , Deleção de Genes , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Origem de Replicação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Mol Cell ; 48(1): 98-108, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22885006

RESUMO

The cohesin complex holds together newly replicated chromatids and is involved in diverse pathways that preserve genome integrity. We show that in budding yeast, cohesin is transiently recruited to active replication origins, and it spreads along DNA as forks progress. When DNA synthesis is impeded, cohesin accumulates at replication sites and is critical for the recovery of stalled forks. Cohesin enrichment at replication forks does not depend on γH2A(X) formation, which differs from its loading requirements at DNA double-strand breaks (DSBs). However, cohesin localization is largely reduced in rad50Δ mutants and in cells lacking both Mec1 and Tel1 checkpoint kinases. Interestingly, cohesin loading at replication sites depends on the structural features of Rad50 that are important for bridging sister chromatids, including the CXXC hook domain and the length of the coiled-coil extensions. Together, these data reveal a function for cohesin in the maintenance of genome integrity during S phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Genes Fúngicos , Histonas/metabolismo , Hidroxiureia/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico , Coesinas
13.
Proc Natl Acad Sci U S A ; 111(18): E1899-908, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24740181

RESUMO

Eukaryotic DNA synthesis initiates from multiple replication origins and progresses through bidirectional replication forks to ensure efficient duplication of the genome. Temporal control of initiation from origins and regulation of replication fork functions are important aspects for maintaining genome stability. Multiple kinase-signaling pathways are involved in these processes. The Dbf4-dependent Cdc7 kinase (DDK), cyclin-dependent kinase (CDK), and Mec1, the yeast Ataxia telangiectasia mutated/Ataxia telangiectasia mutated Rad3-related checkpoint regulator, all target the structurally disordered N-terminal serine/threonine-rich domain (NSD) of mini-chromosome maintenance subunit 4 (Mcm4), a subunit of the mini-chromosome maintenance (MCM) replicative helicase complex. Using whole-genome replication profile analysis and single-molecule DNA fiber analysis, we show that under replication stress the temporal pattern of origin activation and DNA replication fork progression are altered in cells with mutations within two separate segments of the Mcm4 NSD. The proximal segment of the NSD residing next to the DDK-docking domain mediates repression of late-origin firing by checkpoint signals because in its absence late origins become active despite an elevated DNA damage-checkpoint response. In contrast, the distal segment of the NSD at the N terminus plays no role in the temporal pattern of origin firing but has a strong influence on replication fork progression and on checkpoint signaling. Both fork progression and checkpoint response are regulated by the phosphorylation of the canonical CDK sites at the distal NSD. Together, our data suggest that the eukaryotic MCM helicase contains an intrinsic regulatory domain that integrates multiple signals to coordinate origin activation and replication fork progression under stress conditions.


Assuntos
Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , DNA Fúngico/química , Componente 4 do Complexo de Manutenção de Minicromossomo/química , Componente 4 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Genoma Fúngico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Componente 4 do Complexo de Manutenção de Minicromossomo/genética , Mutação , Conformação de Ácido Nucleico , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas , Origem de Replicação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
14.
EMBO J ; 31(4): 883-94, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22234185

RESUMO

Intracellular deoxyribonucleoside triphosphate (dNTP) pools must be tightly regulated to preserve genome integrity. Indeed, alterations in dNTP pools are associated with increased mutagenesis, genomic instability and tumourigenesis. However, the mechanisms by which altered or imbalanced dNTP pools affect DNA synthesis remain poorly understood. Here, we show that changes in intracellular dNTP levels affect replication dynamics in budding yeast in different ways. Upregulation of the activity of ribonucleotide reductase (RNR) increases elongation, indicating that dNTP pools are limiting for normal DNA replication. In contrast, inhibition of RNR activity with hydroxyurea (HU) induces a sharp transition to a slow-replication mode within minutes after S-phase entry. Upregulation of RNR activity delays this transition and modulates both fork speed and origin usage under replication stress. Interestingly, we also observed that chromosomal instability (CIN) mutants have increased dNTP pools and show enhanced DNA synthesis in the presence of HU. Since upregulation of RNR promotes fork progression in the presence of DNA lesions, we propose that CIN mutants adapt to chronic replication stress by upregulating dNTP pools.


Assuntos
Replicação do DNA , Desoxirribonucleosídeos/metabolismo , Origem de Replicação , Saccharomyces cerevisiae/genética , Bromodesoxiuridina , Dano ao DNA , DNA Fúngico/biossíntese , DNA Fúngico/genética , Hidroxiureia/farmacologia , Imunoprecipitação , Ribonucleotídeo Redutases/metabolismo , Fase S , Saccharomyces cerevisiae/enzimologia
15.
EMBO Rep ; 15(12): 1226-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25391904

RESUMO

The initiation of eukaryotic DNA replication is a highly regulated process conserved from yeast to human. The past decade has seen significant advances in understanding how the CMG (Cdc45­MCM­GINS) replicative helicase is loaded onto DNA. However, very little was known on how this complex is removed from chromatin at the end of S phase. Two papers in a recent issue of Science [1], [2] show that in yeast and in Xenopus, the CMG complex is unloaded at replication termination sites by an active mechanism involving the polyubiquitylation of Mcm7.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box/metabolismo , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Animais
16.
Methods ; 57(2): 149-57, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22579803

RESUMO

DNA combing is a powerful method developed by Bensimon and colleagues to stretch DNA molecules on silanized glass coverslips. This technique provides a unique way to monitor the activation of replication origins and the progression of replication forks at the level of single DNA molecules, after incorporation of thymidine analogs, such as 5-bromo-2'-deoxyuridine (BrdU), 5-iodo-2'-deoxyuridine (IdU) and 5-chloro-2'-deoxyuridine (CldU) in newly-synthesized DNA. Unlike microarray-based approaches, this assay gives access to the variability of replication profiles in individual cells. It can also be used to monitor the effect of DNA lesions on fork progression, arrest and restart. In this review, we propose standard DNA combing methods to analyze DNA replication in budding yeast and in human cells. We also show that 5-ethynyl-2'-deoxyuridine (EdU) can be used as a good alternative to BrdU for DNA combing analysis, as unlike halogenated nucleotides, it can be detected without prior denaturation of DNA.


Assuntos
Replicação do DNA , DNA Fúngico/biossíntese , Coloração e Rotulagem , Animais , Bromodesoxiuridina/metabolismo , Química Click , DNA/biossíntese , DNA/química , DNA/isolamento & purificação , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , DNA de Cadeia Simples/química , Interpretação Estatística de Dados , Técnica Indireta de Fluorescência para Anticorpo , Genoma Fúngico , Genoma Humano , Células HCT116 , Humanos , Hidroxiureia/farmacologia , Ácidos Nucleicos Imobilizados/química , Hibridização in Situ Fluorescente , Mamíferos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Saccharomyces cerevisiae/genética , Estatísticas não Paramétricas
17.
C R Biol ; 346: 95-105, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37779381

RESUMO

Replication stress is an alteration in the progression of replication forks caused by a variety of events of endogenous or exogenous origin. In precancerous lesions, this stress is exacerbated by the deregulation of oncogenic pathways, which notably disrupts the coordination between replication and transcription, and leads to genetic instability and cancer development. It is now well established that transcription can interfere with genome replication in different ways, such as head-on collisions between polymerases, accumulation of positive DNA supercoils or formation of R-loops. These structures form during transcription when nascent RNA reanneals with DNA behind the RNA polymerase, forming a stable DNA:RNA hybrid. In this review, we discuss how these different cotranscriptional processes disrupt the progression of replication forks and how they contribute to genetic instability in cancer cells.


Le stress réplicatif correspond à une altération de la progression des fourches de réplication causé par une variété d'événements d'origine endogène ou exogène. Dans les lésions précancéreuses, ce stress est aggravé par la dérégulation de voies oncogéniques, qui perturbe notamment la coordination entre la réplication et la transcription du génome et entraine une instabilité génétique contribuant au développement du cancer. Il est maintenant bien établi que la transcription peut interférer avec la réplication du génome de différentes façons, telles que des collisions frontales entre polymérases, l'accumulation de supertours positifs de l'ADN ou la formation de R-loops. Ces structures se forment au cours de la transcription lorsque l'ARN naissant se réassocie avec l'ADN derrière l'ARN polymérase, formant un hybride ADN :ARN stable. Dans cette revue, nous discutons comment ces différents processus cotranscriptionnels perturbent la progression des fourches de réplication et comment ils contribuent à l'instabilité génétique des cellules cancéreuses.


Assuntos
Neoplasias , Transcrição Gênica , Estruturas R-Loop , Replicação do DNA/genética , DNA , Oncogenes/genética , RNA , Neoplasias/genética
18.
DNA Repair (Amst) ; 107: 103199, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34399314

RESUMO

Transcription-replication conflicts (TRCs) represent a potential source of endogenous replication stress (RS) and genomic instability in eukaryotic cells but the mechanisms that underlie this instability remain poorly understood. Part of the problem could come from non-B DNA structures called R-loops, which are formed of a RNA:DNA hybrid and a displaced ssDNA loop. In this review, we discuss different scenarios in which R-loops directly or indirectly interfere with DNA replication. We also present other types of TRCs that may not depend on R-loops to impede fork progression. Finally, we discuss alternative models in which toxic RNA:DNA hybrids form at stalled forks as a consequence - but not a cause - of replication stress and interfere with replication resumption.


Assuntos
Instabilidade Genômica
19.
STAR Protoc ; 2(2): 100525, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34027483

RESUMO

This protocol describes how to culture, image, and determine the nuclear position of a fluorescently tagged DNA locus in the 3D nucleoplasm of fixed Saccharomyces cerevisiae cells. Here, we propose a manual scoring method based on widefield images and an automated method based on 3D-SIM images. Yeast culture conditions have to be followed meticulously to get the best biological response in a given environment. For complete details on the use and execution of this protocol, please refer to Forey et al. (2020).


Assuntos
Núcleo Celular/química , DNA , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Saccharomyces cerevisiae , DNA/análise , DNA/química , DNA/metabolismo , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Sondas Moleculares/análise , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia
20.
Nature ; 430(6999): 573-8, 2004 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15229615

RESUMO

Sister chromatids, the products of eukaryotic DNA replication, are held together by the chromosomal cohesin complex after their synthesis. This allows the spindle in mitosis to recognize pairs of replication products for segregation into opposite directions. Cohesin forms large protein rings that may bind DNA strands by encircling them, but the characterization of cohesin binding to chromosomes in vivo has remained vague. We have performed high resolution analysis of cohesin association along budding yeast chromosomes III-VI. Cohesin localizes almost exclusively between genes that are transcribed in converging directions. We find that active transcription positions cohesin at these sites, not the underlying DNA sequence. Cohesin is initially loaded onto chromosomes at separate places, marked by the Scc2/Scc4 cohesin loading complex, from where it appears to slide to its more permanent locations. But even after sister chromatid cohesion is established, changes in transcription lead to repositioning of cohesin. Thus the sites of cohesin binding and therefore probably sister chromatid cohesion, a key architectural feature of mitotic chromosomes, display surprising flexibility. Cohesin localization to places of convergent transcription is conserved in fission yeast, suggesting that it is a common feature of eukaryotic chromosomes.


Assuntos
Cromossomos Fúngicos/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Transcrição Gênica , Proteínas de Ciclo Celular , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Cromossomos Fúngicos/genética , Sequência Conservada/genética , DNA Intergênico/genética , DNA Intergênico/metabolismo , Proteínas Fúngicas , Genes Fúngicos/genética , Ligação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA