RESUMO
Glioblastoma multiforme (GBM) also categorized as a grade IV astrocytoma, is an aggressive brain tumor which invades the surrounding brain tissue. Hyperthermia is known to be effective for chemo-radiotherapy to sensitize cancer cells to radiation as a treatment option for patients with GBM. The current study was performed in order to assess and compare the properties of the astrocyte and cancer stem cells isolated from glioblastoma exposed to hyperthermia. Astrocytes and cancer stem cells were isolated from human glioblastoma tissue. Glioblastoma tissues were digested and cultured in culture medium supplemented with B27, basic fibroblast growth factor and epidermal growth factor. The morphology and specific markers were evaluated in astrocyte and cancer stem cell of human glioblastoma through immunocytochemistry and quantitative real-time RT-PCR. The multipotentiality of cancer stem cells was presented using differentiation potential into neurons, oligodendrocytes, and astrocytes. For hyperthermia, cells were exposed to temperatures at 4246 °C for 1 h using a water bath. Cell survival rate by MTT assay and apoptosis using quantitative real-time RT-PCR and western blot were evaluated. Results demonstrated that there were two morphology types in cell culture including epithelioid morphology and fibroblastic morphology. Astrocytes were confirmed via expression of the Glial fibrillary acidic protein (GFAP) protein; whereas, cancer stem cells (CSCs) were round and floating in the culture medium. Immunocytochemical staining indicated that nestin, CD133 and SRY-box 2 (SOX2) antigens were positively expressed in primary neurospheres. Results indicated that cancer stem cells of glioblastoma are multipotent and are able to differentiate into neurons, oligodendrocytes, and astrocytes. The current study obtained evidence via apoptosis evaluation that CSCs are resistant to hyperthermia when compared to astrocytes isolated from glioblastoma. Furthermore, hyperthermia was demonstrated to decrease cell resistance, which may be effective for chemo-radiotherapy to sensitize cancer cells to radiation. Taken together, CSCs of glioblastoma could be used as a powerful tool for evaluating the tumorigenesis process in the brain and developing novel therapies for treatment of GBM.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Hipertermia Induzida , Apoptose , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Humanos , Células-Tronco Neoplásicas/patologiaRESUMO
Vascular endothelial growth factor (VEGF) is a vascular growth factor more recently recognized as a neurotrophic factor (for review, see Storkebaum E, Lambrechts D, Carmeliet P. BioEssays 2004;26:943-54). We previously reported that endogenous VEGF protein is dramatically upregulated after pilocarpine-induced status epilepticus in the rat, and that intra-hippocampal infusions of recombinant human VEGF significantly protected against the loss of hippocampal CA1 neurons in this model (Nicoletti JN, Shah SK, McCloskey DP, et al. Neuroscience 2008;151:232-41). We hypothesized that we would see a preservation of cognitive and emotional functioning with VEGF treatment accompanying the neuroprotection previously observed in this paradigm. Using the Morris water maze to evaluate learning and memory, and the light-dark task to assess anxiety, we found a selective profile of preservation. Specifically, VEGF completely preserved normal anxiety functioning and partially but significantly protected learning and memory after status epilepticus. To determine whether the ability of VEGF to attenuate behavioral deficits was accompanied by sustained preservation of hippocampal neurons, we stereologically estimated CA1 pyramidal neuron densities 4 weeks after status epilepticus. At this time point, we found no significant difference in neuronal densities between VEGF- and control-treated status epilepticus animals, suggesting that VEGF could have protected hippocampal functioning independent of its neuroprotective effect.